Skip to main content
Log in

Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus

  • Systems Biotechnology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and anticancer activity produced by Streptomyces hygroscopicus. In this study, a mutant strain obtained by ultraviolet mutagenesis displayed higher rapamycin production capacity compared to the wild-type S. hygroscopicus ATCC 29253. To gain insights into the mechanism of rapamycin overproduction, comparative metabolic profiling between the wild-type and mutant strain was performed. A total of 86 metabolites were identified by gas chromatography–mass spectrometry. Pattern recognition methods, including principal component analysis, partial least squares and partial least squares discriminant analysis, were employed to determine the key biomarkers. The results showed that 22 potential biomarkers were closely associated with the increase of rapamycin production and the tremendous metabolic difference was observed between the two strains. Furthermore, metabolic pathway analysis revealed that amino acids metabolism played an important role in the synthesis of rapamycin, especially lysine, valine, tryptophan, isoleucine, glutamate, arginine and ornithine. The inadequate supply of amino acids, or namely “nitrogen starvation” occurred in the mutant strain. Subsequently, the exogenous addition of amino acids into the fermentation medium of the mutant strain confirmed the above conclusion, and rapamycin production of the mutant strain increased to 426.7 mg/L after adding lysine, approximately 5.8-fold of that in the wild-type strain. Finally, the results of real-time PCR and enzyme activity assays demonstrated that dihydrodipicolinate synthase involved with lysine metabolism played vital role in the biosynthesis of rapamycin. These findings will provide a theoretical basis for further improving production of rapamycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baranasic D, Gacesa R, Starcevic A, Zucko J, Blazic M, Horvat M, Gjuracic K, Fujs S, Hranueli D, Kosec G, Cullum J, Petkovic H (2013) Draft genome sequence of Streptomyces rapamycinicus strain NRRL 5491, the producer of the immunosuppressant rapamycin. Genome Announc 1(4). doi:10.1128/genomeA.00581-13

  2. Borges AF, Fonseca C, Ferreira RB, Lourenco AM, Monteiro S (2014) Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera. Plos One 9(10). doi:10.1371/journal.pone.0111399

  3. Calne RY, Collier DS, Lim S, Pollard SG, Samaan A, White DJ, Thiru S (1989) Rapamycin for immunosuppression in organ allografting. Lancet 2(8656):227

    Article  CAS  PubMed  Google Scholar 

  4. Chen SH, Hwang DR, Chen GH, Hsu NS, Wu YT, Li TL, Wong CH (2012) Engineering transaldolase in Pichia stipitis to improve bioethanol production. ACS Chem Biol 7(3):481–486. doi:10.1021/cb200396b

    Article  PubMed  Google Scholar 

  5. Chen X, Wei P, Fan L, Yang D, Zhu X, Shen W, Xu Z, Cen P (2009) Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Appl Microbiol Biotechnol 83(3):507–512. doi:10.1007/s00253-009-1918-7

    Article  CAS  PubMed  Google Scholar 

  6. Cheng YR, Fang A, Demain AL (1995) Effect of amino acids on rapamycin biosynthesis by Streptomyces hygroscopicus. Appl Microbiol Biotechnol 43(6):1096–1098

    Article  CAS  PubMed  Google Scholar 

  7. Cheng YR, Hauck L, Demain AL (1995) Phosphate, ammonium, magnesium and iron nutrition of Streptomyces hygroscopicus with respect to rapamycin biosynthesis. J Ind Microbiol 14(5):424–427. doi:10.1007/bf01569962

    Article  CAS  PubMed  Google Scholar 

  8. Cheng YR, Huang J, Qiang H, Lin WL, Demain AL (2001) Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904. J Antibiot 54(11):967–972

    Article  CAS  PubMed  Google Scholar 

  9. Dietmair S, Hodson MP, Quek L-E, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK (2012) Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng 109(6):1404–1414. doi:10.1002/bit.24496

    Article  CAS  PubMed  Google Scholar 

  10. Ding M-Z, Wang X, Yang Y, Yuan Y-J (2012) Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 8(2):232–243. doi:10.1007/s11306-011-0303-6

    Article  CAS  Google Scholar 

  11. Ding MZ, Tian HC, Cheng JS, Yuan YJ (2009) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144(4):279–286. doi:10.1016/j.jbiotec.2009.09.020

    Article  CAS  PubMed  Google Scholar 

  12. Dotzlaf JE, Metzger LS, Foglesong MA (1984) Incorporation of amino acid-derived carbon into tylactone by Streptomyces fradiae GS14. Antimicrob Agents Chemother 25(2):216–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Douros J, Suffness M (1981) New antitumor substances of natural origin. Cancer Treat Rev 8(1):63–87. doi:10.1016/s0305-7372(81)80006-0

    Article  CAS  PubMed  Google Scholar 

  14. Eggeling L, Oberle S, Sahm H (1998) Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49(1):24–30

    Article  CAS  PubMed  Google Scholar 

  15. Fang A, Demain AL (1995) Exogenous shikimic acid stimulates rapamycin biosynthesis in Streptomyces hygroscopicus. Folia Microbiol 40(6):607–610. doi:10.1007/bf02818516

    Article  CAS  Google Scholar 

  16. Fridman E, Pichersky E (2005) Metabolomics, genomics, proteomics, and the identification of enzymes and their substrates and products. Curr Opin Plant Biol 8(3):242–248. doi:10.1016/j.pbi.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Gatto GJ, Boyne MT, Kelleher NL, Walsh CT (2006) Biosynthesis of pipecolic acid by RapL, a lysine cyclodeaminase encoded in the rapamycin gene cluster. J Am Chem Soc 128(11):3838–3847. doi:10.1021/ja0587603

    Article  CAS  PubMed  Google Scholar 

  18. Geng F, Chen Z, Zheng P, Sun J, Zeng A-P (2013) Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol 97(5):1963–1971. doi:10.1007/s00253-012-4062-8

    Article  CAS  PubMed  Google Scholar 

  19. Jeong E, Kim H-W, Nam J-Y, Shin H-S (2010) Enhancement of bioenergy production and effluent quality by integrating optimized acidification with submerged anaerobic membrane bioreactor. Bioresour Technol 101(Suppl 1):S7–S12. doi:10.1016/j.biortech.2009.04.064

    Article  CAS  PubMed  Google Scholar 

  20. Jung WS, Yoo YJ, Park JW, Park SR, Han AR, Ban YH, Kim EJ, Kim E, Yoon YJ (2011) A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 91(5):1389–1397. doi:10.1007/s00253-011-3348-6

    Article  CAS  PubMed  Google Scholar 

  21. Kamoun P (1992) Valine is a precursor of propionyl-CoA. Trends Biochem Sci 17(5):175–176. doi:10.1016/0968-0004(92)90258-b

    Article  CAS  PubMed  Google Scholar 

  22. Kassama Y, Xu Y, Dunn WB, Geukens N, Anne J, Goodacre R (2010) Assessment of adaptive focused acoustics versus manual vortex/freeze–thaw for intracellular metabolite extraction from Streptomyces lividans producing recombinant proteins using GC–MS and multi-block principal component analysis. Analyst 135(5):934–942. doi:10.1039/b918163f

    Article  CAS  PubMed  Google Scholar 

  23. Kasumov T, Martini WZ, Reszko AE, Bian F, Pierce BA, David F, Roe CR, Brunengraber H (2002) Assay of the concentration and C-13 isotopic enrichment of propionyl-CoA, methylmalonyl-CoA, and succinyl-CoA by gas chromatography–mass spectrometry. Anal Biochem 305(1):90–96. doi:10.1006/abio.2002.5639

    Article  CAS  PubMed  Google Scholar 

  24. Kim CJ, Chang YK, Chun GT (2000) Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol Prog 16(4):548–552. doi:10.1021/bp000038f

    Article  CAS  PubMed  Google Scholar 

  25. Kim YH, Park BS, Bhatia SK, Seo HM, Jeon JM, Kim HJ, Yi DH, Lee JH, Choi KY, Park HY, Kim YG, Yang YH (2014) Production of rapamycin in Streptomyces hygroscopicus from glycerol-based media optimized by systemic methodology. J Microbiol Biotechnol 24(10):1319–1326

    Article  CAS  PubMed  Google Scholar 

  26. Kojima I, Cheng YR, Mohan V, Demain AL (1995) Carbon source nutrition of rapamycin biosynthesis in Streptomyces hygroscopicus. J Ind Microbiol 14(6):436–439. doi:10.1007/bf01573954

    Article  CAS  PubMed  Google Scholar 

  27. Lee MS, Kojima I, Demain AL (1997) Effect of nitrogen source on biosynthesis of rapamycin by Streptomyces hygroscopicus. J Ind Microbiol Biotechnol 19(2):83–86. doi:10.1038/sj.jim.2900434

    Article  CAS  PubMed  Google Scholar 

  28. Li CX, Florova G, Akopiants K, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150(Pt 10):3463–3472. doi:10.1099/mic.0.27251-0

    Article  CAS  PubMed  Google Scholar 

  29. Martens-Lobenhoffer J, Bode-Boeger SM (2014) Mass spectrometric quantification of l-arginine and its pathway related substances in biofluids: the road to maturity. J Chromatogr, B: Anal Technol Biomed Life Sci 964:89–102. doi:10.1016/j.jchromb.2013.10.030

    Article  CAS  Google Scholar 

  30. Milrad de Forchetti SR, Cazzulo JJ (1976) Some properties of the pyruvate carboxylase from Pseudomonas fluorescens. J Gen Microbiol 93(1):75–81

    Article  CAS  PubMed  Google Scholar 

  31. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3(2):295–300

    CAS  PubMed  Google Scholar 

  32. Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6(4):300–312. doi:10.1016/j.ymben.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  33. Ruan X, Stassi D, Lax SA, Katz L (1997) A second type-I PKS gene cluster isolated from Streptomyces hygroscopicus ATCC 29253, a rapamycin-producing strain. Gene 203(1):1–9. doi:10.1016/s0378-1119(97)00450-2

    Article  CAS  PubMed  Google Scholar 

  34. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  35. Sehgal SN, Baker H, Vezina C (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28(10):727–732

    Article  CAS  Google Scholar 

  36. Sibarani NE, Gorman MA, Dogovski C, Parker MW, Perugini MA (2010) Crystallization of dihydrodipicolinate synthase from a clinical isolate of Streptococcus pneumoniae. Acta Crystallogr Sect F: Struct Biol Cryst Commun 66(Pt 1):32–36. doi:10.1107/s174430910904771x

    Article  CAS  Google Scholar 

  37. Singh BP, Behera BK (2009) Regulation of tacrolimus production by altering primary source of carbons and amino acids. Lett Appl Microbiol 49(2):254–259. doi:10.1111/j.1472-765X.2009.02652.x

    Article  CAS  PubMed  Google Scholar 

  38. Sinha R, Singh S, Srivastava P (2014) Studies on process optimization methods for rapamycin production using Streptomyces hygroscopicus ATCC 29253. Bioprocess Biosyst Eng 37(5):829–840. doi:10.1007/s00449-013-1051-y

    Article  CAS  PubMed  Google Scholar 

  39. Tang L, Zhang YX, Hutchinson CR (1994) Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J Bacteriol 176(19):6107–6119

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Tsotsou GE, Barbirato F (2007) Biochemical characterisation of recombinant Streptomyces pristinaespiralis l-lysine cyclodeaminase. Biochimie 89(5):591–604. doi:10.1016/j.biochi.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  41. Wentzel A, Sletta H, Consortium S, Ellingsen TE, Bruheim P (2012) Intracellular metabolite pool changes in response to nutrient depletion induced metabolic switching in Streptomyces coelicolor. Metabolites 2(1):178–194. doi:10.3390/metabo2010178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wood CE, Giroux D, Gridley K (2003) Fetal brain regional responses to cerebral hypoperfusion: modulation by estrogen. Brain Res 993(1–2):84–89. doi:10.1016/j.brainres.2003.09.001

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, Wishart DS (2010) MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 26(18):2342–2344. doi:10.1093/bioinformatics/btq418

    Article  CAS  PubMed  Google Scholar 

  44. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6(6):743–760. doi:10.1038/nprot.2011.319

    Article  CAS  PubMed  Google Scholar 

  45. Xia M, Huang D, Li S, Wen J, Jia X, Chen Y (2013) Enhanced FK506 production in Streptomyces tsukubaensis by rational feeding strategies based on comparative metabolic profiling analysis. Biotechnol Bioeng 110(10):2717–2730. doi:10.1002/bit.24941

    Article  CAS  PubMed  Google Scholar 

  46. Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett 27(15):1135–1140. doi:10.1007/s10529-005-8463-y

    Article  CAS  PubMed  Google Scholar 

  47. Yu S, Huang D, Wen J, Li S, Chen Y, Jia X (2012) Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresour Technol 114:610–615. doi:10.1016/j.biortech.2012.03.087

    Article  CAS  PubMed  Google Scholar 

  48. Zhao S, Huang D, Qi H, Wen J, Jia X (2013) Comparative metabolic profiling-based improvement of rapamycin production by Streptomyces hygroscopicus. Appl Microbiol Biotechnol 97(12):5329–5341. doi:10.1007/s00253-013-4852-7

    Article  CAS  PubMed  Google Scholar 

  49. Zhou LN, Yao WF, Liu J, Shang J, Shan MQ, Zhang L, Ding AW (2013) Protective effect of different solvent extracts from platycladi cacumen carbonisatum on LPS-induced human umbilical vein endothelial cells damage. Zhongguo Zhong Yao Za Zhi 38(22):3933–3938

    PubMed  Google Scholar 

  50. Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z (2010) Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 107(3):506–515. doi:10.1002/bit.22819

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National 973 Project of China (No. 2013CB733600), the National 863 Project of China (No. 2011AA02A206), the Key Program of National Natural Science Foundation of China (No. 21236005), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110032130005) and the National Natural Science Foundation of China (No. 21176181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Wen.

Additional information

B. Wang and J. Liu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Liu, J., Liu, H. et al. Comparative metabolic profiling reveals the key role of amino acids metabolism in the rapamycin overproduction by Streptomyces hygroscopicus . J Ind Microbiol Biotechnol 42, 949–963 (2015). https://doi.org/10.1007/s10295-015-1611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1611-z

Keywords

Navigation