Skip to main content
Log in

Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The metabolic responses of parental and inhibitors-tolerant yeasts in presence of the combination of three inhibitors (furfural, phenol and acetic acid) during ethanol fermentation were investigated by comparative metabolic profiling. Samples of parental and tolerant yeasts with/without three inhibitors in fermentation medium represented significantly different metabolic states. Further investigation on the specific responses of two strains revealed that the levels of most amino acids, inositol, and phenethylamine were dramatically increased in presence of inhibitors in parental yeast, while they kept relatively stable in tolerant yeast. It suggested that the protein degradation was increased and oxygen stress was induced by combined inhibitors in parental yeast. In addition, carbon metabolism (glycolysis and TCA) and pyrimidine ribonucleotides pathway (uracil and cytosine) were reduced in both strains in presence of combined inhibitors, which was considered as the general stress response. Higher levels of pyridimines in tolerant yeast suggested that they were responsible for counteracting the stress of combined inhibitors. These findings provided new insights into underlying mechanisms of yeast in resistance to the synergistic effects of inhibitors in lignocellulose hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3-PGA:

3-phosphoglycerate

PEP:

Phosphoenolpyruvate

G3P:

Glycerol-3-phosphate

Glyceral-3P:

Glyceraldehyde-3-phosphate

α-KG:

α-ketoglutarate

OAA:

Oxaloacetate

Val:

Valine

Ala:

Alanine

Leu:

Leucine

Ile:

Isoleucine

Pro:

Proline

Gly:

Glycine

Ser:

Serine

Thr:

Threonine

Pyro:

Pyroglutamatic acid

Asp:

Aspartic acid

Hypro:

Hydroxyproline

GABA:

γ-aminobutyric acid

Cys:

Cysteine

Glu:

Glutamic acid

Phe:

Phenyalanine

Asn:

Asparagine

Orn:

Orinine

Lys:

Lysine

Tyr:

Tyrosine

Trp:

Tryptophane

References

  • Adler, L., Pedersen, A., & Tunblad-Johansson, I. (1982). Polyol accumulation by two filamentous fungi grown at different concentrations of NaCl. Plant Physiology, 56, 139–142.

    Article  CAS  Google Scholar 

  • Ando, S., Arai, I., Kiyoto, K., & Hanai, S. (1986). Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. Journal of Fermentation Technology, 64, 567–570.

    Article  CAS  Google Scholar 

  • Bauer, B. E., Rossington, D., Mollapour, M., et al. (2003). Weak organic acid stress inhibits aromatic amino acid uptake by yeast, causing a strong influence of amino acid auxotrophies on the phenotypes of membrane transporter mutants. European Journal of Biochemistry, 270, 3189–3195.

    Article  PubMed  CAS  Google Scholar 

  • Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E., & Gustin, M. C. (1993). An osmosensing signal transduction pathway in yeast. Science, 259, 1760–1763.

    Article  PubMed  CAS  Google Scholar 

  • Ding, M. Z., Li, B. Z., Cheng, J. S., & Yuan, Y. J. (2010a). Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS, 14, 553–561.

    Article  PubMed  CAS  Google Scholar 

  • Ding, M. Z., Tian, H. C., Cheng, J. S., & Yuan, Y. J. (2009). Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. Journal of Biotechnology, 144, 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Ding, M. Z., Zhou, X., & Yuan, Y. J. (2010b). Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics, 6, 42–55.

    Article  CAS  Google Scholar 

  • Gasch, A. P., Spellman, P. T., Kao, C. M., et al. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.

    PubMed  CAS  Google Scholar 

  • Han, P. P., & Yuan, Y. J. (2009). Metabolic profiling as a tool for understanding defense response of Taxus cuspidata cells to shear stress. Biotechnology Progress, 25, 1244–1253.

    Article  PubMed  CAS  Google Scholar 

  • Heipieper, H. J., Weber, F. J., Sikkema, J., Keweloh, H., & de Bont, J. A. M. (1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 12, 409–415.

    Article  CAS  Google Scholar 

  • Hohmann, S. (2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66, 300–372.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, I. S., Taherzadeh, M. J., Niklasson, C., & Lidén, G. (2001). Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 75, 540–549.

    Article  PubMed  Google Scholar 

  • Jennings, D. H. (1984). Polyol metabolism in fungi. Advances in Microbial Physiology, 25, 149–193.

    Article  PubMed  CAS  Google Scholar 

  • Jozefczuk, S., Klie, S., Catchpole, G., et al. (2010). Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6, 364.

    Article  PubMed  Google Scholar 

  • Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 93, 1196–1206.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, S., Cassland, P., & Jonsson, L. J. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Applied and Environmental Microbiology, 67, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., et al. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enyzme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  • Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N. O., & Jönsson, L. J. (2000). The influence of lignocellulose-derived aromatic compounds on oxygen limited growth and ethanol fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 84–86, 617–632.

    Article  PubMed  Google Scholar 

  • Li, B. Z., & Yuan, Y. J. (2010). Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 86, 1915–1924.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F. M., Qiao, B., & Yuan, Y. J. (2009). Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound. Applied and Environmental Microbiology, 75, 3765–3776.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z. L. (2006). Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Applied Microbiology and Biotechnology, 73, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Mandelstam, J. (1963). Protein turnover and its function in economy of cell. Annals of the New York Academy of Sciences, 102, 621–636.

    Article  CAS  Google Scholar 

  • Martinez, A., Rodriguez, M. E., Wells, M. L., et al. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 17, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, A. R. (1994). Effects of furfural on ethanol formation by Saccharomyces cerevisiae: mathematical models. Current Microbiology, 29, 87–90.

    Article  CAS  Google Scholar 

  • Oliva, J. M., Sáez, F., Ballesteros, I., et al. (2003). Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 105–108, 141–154.

    Article  PubMed  Google Scholar 

  • Palmqvist, E., Almeida, J. S., & Hahn-Hägerdal, B. (1999a). Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnology and Bioengineering, 62, 447–454.

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hägerdal, B. (1999b). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 63, 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  • Pampulha, M. E., & Loureiro-Dias, M. C. (1989). Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Applied Microbiology and Biotechnology, 31, 547–550.

    Article  CAS  Google Scholar 

  • Pampulha, M. E., & Loureiro-Dias, M. C. (1990). Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Applied Microbiology and Biotechnology, 34, 375–380.

    Article  CAS  Google Scholar 

  • Pinontoan, R., Krystofova, S., Kawano, T., et al. (2002). Phenylethylamine induces an increase in cytosolic Ca2+ in yeast. Bioscience Biotechnology and Biochemistry, 66, 1069–1074.

    Article  CAS  Google Scholar 

  • Sárvári Horváth, I., Franzén, C. J., Taherzadeh, M. J., Niklasson, C., & Lidén, G. (2003). Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Applied and Environmental Microbiology, 69, 4076–4086.

    Article  PubMed  Google Scholar 

  • Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (2000). Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 87, 169–174.

    Article  Google Scholar 

  • Weber, H., Polen, T., Heuveling, J., Wendisch, V. F., & Hengge, R. (2005). Genome-wide analysis of the general stress response network in Escherichia coli: {sigma}S-dependent genes, promoters, and sigma factor selectivity. Journal of Bacteriology, 187, 1591–1603.

    Article  PubMed  CAS  Google Scholar 

  • Willetts, N. S. (1967). Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochemical Journal, 103, 453.

    PubMed  CAS  Google Scholar 

  • Xia, J. M., & Yuan, Y. J. (2009). Comparative lipidomics of four strains of Saccharomyces cerevisiae reveals different responses to furfural, phenol, and acetic acid. Journal of Agriculture and Food Chemistry, 57, 99–108.

    Article  CAS  Google Scholar 

  • York, J. D. (2006). Regulation of nuclear processes by inositol polyphosphates. Biochimica et Biophysica Acta, 1761, 552–559.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Basic Research Program of China (“973” Program: 2007CB714301, 2011CBA00802), and the National Natural Science Foundation of China (Key Program: 20736006, Major International Joint Research Project: 21020102040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Jin Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, MZ., Wang, X., Yang, Y. et al. Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 8, 232–243 (2012). https://doi.org/10.1007/s11306-011-0303-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0303-6

Keywords

Navigation