Skip to main content
Log in

Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) catalyzes the first committed reaction of l-lysine biosynthesis in bacteria and plants and is allosterically regulated by l-lysine. In previous studies, DHDPSs from different species were proved to have different sensitivity to l-lysine inhibition. In this study, we investigated the key determinants of feedback regulation between two industrially important DHDPSs, the l-lysine-sensitive DHDPS from Escherichia coli and l-lysine-insensitive DHDPS from Corynebacterium glutamicum, by sequence and structure comparisons and site-directed mutation. Feedback inhibition of E. coli DHDPS was successfully alleviated after substitution of the residues around the inhibitor’s binding sites with those of C. glutamicum DHDPS. Interestingly, mutagenesis of the lysine binding sites of C. glutamicum DHDPS according to E. coli DHDPS did not recover the expected feedback inhibition but an activation of DHDPS by l-lysine, probably due to differences in the allosteic signal transduction in the DHDPS of these two organisms. Overexpression of l-lysine-insensitive E. coli DHDPS mutants in E. coli MG1655 resulted in an improvement of l-lysine production yield by 46 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bearer CF, Neet KE (1978) Threonine inhibition of aspartokinase-homoserine dehydrogenase-I of Escherichia-coli—slow transient and cooperativity of inhibition of aspartokinase activity. Biochem 17:3523–3530. doi:10.1021/bi00610a016

    Article  CAS  Google Scholar 

  • Becker J, Wittmann C (2012) Systems and synthetic metabolic engineering for amino acid production—the heartbeat of industrial strain development. Curr Opinion Biotechnol

  • Bittel DC, Shaver JM, Somers DA, Gengenbach BG (1996) Lysine accumulation in maize cell cultures transformed with a lysine-insensitive form of maize dihydrodipicolinate synthase. Theor Appl Genet 92:70–77

    Article  CAS  Google Scholar 

  • Blagova E, Levdikov V, Milioti N, Fogg MJ, Kalliomaa AK, Brannigan JA, Wilson KS, Wilkinson AJ (2006) Crystal structure of dihydrodipicolinate synthase (BA3935) from Bacillus anthracis at 1.94 angstrom resolution. Proteins 62:297–301. doi:10.1002/Prot.20684

    Article  CAS  Google Scholar 

  • Blickling S, Beisel HG, Bozic D, Knablein J, Laber B, Huber R (1997) Structure of dihydrodipicolinate synthase of Nicotiana sylvestris reveals novel quaternary structure. J Mol Biol 274:608–621

    Article  CAS  Google Scholar 

  • Blickling S, Knablein J (1997) Feedback inhibition of dihydrodipicolinate synthase enzymes by L-lysine. Biol Chem 378:207–210

    CAS  Google Scholar 

  • Chen Z, Meyer W, Rappert S, Sun J, Zeng A-P (2011a) Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl Environ Microbiol 77:4352–4360. doi:10.1128/aem.02912-10

    Article  CAS  Google Scholar 

  • Chen Z, Rappert S, Sun J, Zeng A-P (2011b) Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production. J Biotech 154:248–254. doi:10.1016/j.jbiotec.2011.05.005

    Article  CAS  Google Scholar 

  • Chen Z, Wilmanns M, Zeng A-P (2010) Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotech 28:534–542. doi:10.1016/j.tibtech.2010.07.004

    Article  CAS  Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium-glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microb 57:1746–1752

    CAS  Google Scholar 

  • Dobson RCJ, Griffin MDW, Jameson GB, Gerrard JA (2005) The crystal structures of native and (S)-lysine-bound dihydrodipicolinate synthase from Escherichia coli with improved resolution show new features of biological significance. Acta Crystallogr D 61:1116–1124. doi:10.1107/S0907444905016318

    Article  Google Scholar 

  • Dobson RCJ, Griffin MDW, Roberts SJ, Gerrard JA (2004) Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate. Biochimie 86:311–315. doi:10.1016/j.biochi.2004.03.008

    Article  CAS  Google Scholar 

  • Domigan LJ, Scally SW, Fogg MJ, Hutton CA, Perugini MA, Dobson RCJ, Muscroft-Taylor AC, Gerrard JA, Devenish SRA (2009) Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. Bba-Proteins Proteom 1794:1510–1516. doi:10.1016/j.bbapap.2009.06.020

    Article  CAS  Google Scholar 

  • Ghislain M, Frankard V, Jacobs M (1996) A dinucleotide mutation in dihydrodipicolinate synthase of Nicotiana sylvestris leads to lysine overproduction. Plant J 9:135–135

    CAS  Google Scholar 

  • Griffin MDW, Dobson RCJ, Gerrard JA, Perugini MA (2010) Exploring the dihydrodipicolinate synthase tetramer: how resilient is the dimer–dimer interface? Arch Biochem Biophys 494:58–63. doi:10.1016/j.abb.2009.11.014

    Article  CAS  Google Scholar 

  • Kefala G, Evans GL, Griffin MDW, Devenish SRA, Pearce FG, Perugini MA, Gerrard JA, Weiss MS, Dobson RCJ (2008) Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 411:351–360. doi:10.1042/Bj20071360

    Article  CAS  Google Scholar 

  • Laber B, Gomisruth FX, Romao MJ, Huber R (1992) Escherichia-coli dihydrodipicolinate synthase—identification of the active-site and crystallization. Biochem J 288:691–695

    CAS  Google Scholar 

  • Ma C, Xiu Z, Zeng A-P (2011) A new concept to reveal protein dynamics based on energy dissipation. PLoS One 6:e26453

    Article  CAS  Google Scholar 

  • Mazelis M, Creveling RK (1979) Studies of the regulatory properties of dihydrodipicolinate synthase. Plant Physiol 63:110–110

    Google Scholar 

  • Mazelis M, Whatley FR, Whatley J (1977) Enzymology of lysine biosynthesis in higher-plants—occurrence, characterization and some regulatory properties of dihydrodipicolinate synthase. FEBS Lett 84:236–240

    Article  CAS  Google Scholar 

  • Padmanabhan B, Strange RW, Antonyuk SV, Ellis MJ, Hasnain SS, Iino H, Agari Y, Bessho Y, Yokoyama S (2009) Structure of dihydrodipicolinate synthase from Methanocaldococcus jannaschii. Acta Crystallogr F 65:1222–1226. doi:10.1107/S174430910904651X

    Article  Google Scholar 

  • Paris S, Wessel PM, Dumas R (2002) Overproduction, purification, and characterization of recombinant bifunctional threonine-sensitive aspartate kinase-homoserine dehydrogenase from Arabidopsis thaliana. Protein Expr Purif 24:105–110. doi:10.1006/prep.2001.1539

    Article  CAS  Google Scholar 

  • Pearce FG, Perugini MA, McKerchar HJ, Gerrard JA (2006) Dihydrodipicolinate synthase from Thermotoga maritima. Biochem J 400:359–366. doi:10.1042/Bj20060771

    Article  CAS  Google Scholar 

  • Reinscheid DJ, Eikmanns BJ, Sahm H (1991) Analysis of a Corynebacterium-glutamicum hom gene coding for a feedback-resistant homoserine dehydrogenase. J Bacteriol 173:3228–3230

    CAS  Google Scholar 

  • Rice EA, Bannon GA, Glenn KC, Jeong SS, Sturman EJ, Rydel TJ (2008) Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein. Arch Biochem Biophys 480:111–121. doi:10.1016/j.abb.2008.09.018

    Article  CAS  Google Scholar 

  • Shaver JM, Bittel DC, Sellner JM, Frisch DA, Somers DA, Gengenbach BG (1996) Single-amino acid substitutions eliminate lysine inhibition of maize dihydrodipicolinate synthase. Proc Nat Acad Sci U S A 93:1962–1966

    Article  CAS  Google Scholar 

  • Shedlars J, Gilvarg C (1970) Pyruvate-aspartic semialdehyde condensing enzyme of Escherichia-coli. J Biol Chem 245:1362–1373

    Google Scholar 

  • Thomas D, Barbey R, Surdinkerjan Y (1993) Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett 323:289–293. doi:10.1016/0014-5793(93)81359-8

    Article  CAS  Google Scholar 

  • Vold B, Szulmajster J, Carbone A (1975) Regulation of dihydrodipicolinate synthase and aspartate kinase in Bacillus-subtilis. J Bacteriol 121:970–974

    CAS  Google Scholar 

  • Yugari Y, Gilvarg C (1965) The condensation step in diamino-pimelate synthesis. J Biol Chem 240:4710–4716

    CAS  Google Scholar 

Download references

Acknowledgment

The authors FG, PZ, and JS gratefully thank the financial support from the 973 key basic research program with the project 2011CBA00804 and the Chinese Academy of Sciences with the project KSCX2-EW-G-14-1. CZ and AZE were supported by the German Research Foundation (DFG) through the project ZE 542/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Ping Zeng.

Additional information

The authors Feng Geng and Zhen Chen contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geng, F., Chen, Z., Zheng, P. et al. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol 97, 1963–1971 (2013). https://doi.org/10.1007/s00253-012-4062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4062-8

Keywords

Navigation