Skip to main content
Log in

Phosphate, ammonium, magnesium and iron nutrition ofStreptomyces hygroscopicus with respect to rapamycin biosynthesis

  • Published:
Journal of Industrial Microbiology

Summary

Phosphate, ammonium and magnesium salts interfered with rapamycin production byStreptomyces hygroscopicus at concentrations optimal for growth. These observations point to the existence of phosphorus, magnesium and nitrogen-negative regulation mechanisms for rapamycin biosynthesis. On the other hand, Fe2+ stimulated rapamycin production at concentrations greater than that required for growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brana, A.F. and A.L. Demain. 1988. Nitrogen control of antibiotic biosynthesis in actinomycetes. In: Nitrogen Source Control of Microbial Processes (Sanchez-Esquivel, S., ed.), pp. 99–119. CRC Press, Boca Raton, Florida.

    Google Scholar 

  2. Dreyfuss, M., E. Harri, H. Hofmann, H. Kobel, W. Pache and H. Tscherter. 1976. Cyclosporine A and C, new metabolites fromTrichoderma polysporum (Link et Pers.) Rifai. Appl. Microbiol. 3: 125–133.

    Google Scholar 

  3. Kojima, I., Y.R. Cheng, V. Mohan and A.L. Demain. 1995. Carbon source nutrition of rapamycin biosynthesis inStreptomyces hygroscopicus. J. Ind. Microbiol. (in press).

  4. Martin, J.F. 1988. Molecular mechanisms for the control by phosphate of the biosynthesis of antibiotics and other secondary metabolites. In: Regulation of Secondary Metabolism in Actinomycetes (Shapiro, S., ed.), pp. 213–237. CRC Press, Boca Raton, Florida.

    Google Scholar 

  5. Morris, R.E. 1992. Rapamycins: antifungal, antitumor, antiproliferative, and immunosuppressive macrolides. Transpl. Rev. 16: 39–87.

    Google Scholar 

  6. Omura, S. and Y. Tanaka 1984. Biochemistry, regulation and genetics of macrolide production. In: Macrolide Antibiotics: Chemistry, Biology, and Practice (Omura, S., ed.), pp. 199–229, Academic Press, New York.

    Google Scholar 

  7. Paiva, N.L., A.L. Demain and M.F. Roberts. 1991. Incorporation of acetate, propionate, and methionine into rapamycin byStreptomyces hygroscopicus. J. Nat. Prods. 54: 167–177.

    Google Scholar 

  8. Paiva, N.L., A.L. Demain and M.F. Roberts. 1993. The immediate precursor of the nitrogen-containing ring of rapamycin is free pipecolic acid. Enzyme Microb. Technol. 15: 581–585.

    Google Scholar 

  9. Paiva, N.L., M.F. Roberts and A.L. Demain. 1993. The cyclohexane moiety of rapamycin is derived from shikimic acid inStreptomyces hygroscopicus. J. Ind. Microbiol. 12: 423–428.

    Google Scholar 

  10. Sehgal, S.N., K. Molnar-Kimber, T.D. Ocain and B.M. Weichman. 1994. Rapamycin: a novel immunosuppressive macrolide. Med. Res. Rev. 14: 1–22.

    PubMed  Google Scholar 

  11. Shapiro, S. 1988. Nitrogen assimilation in actinomycetes and the influence of nitrogen nutrition on actinomycete secondary metabolism. In: Regulation of Secondary Metabolism in Actinomycetes (Shapiro, S., ed.), pp. 135–221, CRC Press, Boca Raton, Florida.

    Google Scholar 

  12. Tanaka, H., H. Kuroda, H. Marusawa, T. Hatanaka, T. Kino, T. Goto, M. Hashimoto and T. Taga. 1987. Structure of FK506: a novel immunosuppressant isolated fromStreptomyces. J. Amer. Chem. Soc. 109: 5031–5033.

    Google Scholar 

  13. Tkacz, J.S., R.A. Giacobbe and R.L. Monaghan. 1993. Improvement in the titer of echinocandin-type antibiotics: a magnesiumlimited medium supporting the biphasic production of pneumocandins Ao and Bo. J. Ind. Microbiol. 11: 95–103.

    PubMed  Google Scholar 

  14. Vezina, C., A. Kudelski and S.N. Sehgal. 1975. Rapamycin (AY-22, 989), a new antifungal antibiotic: I. Taxonomy of the producting streptomycete and isolation of the active principle. J. Antibiot. 28: 721–726.

    PubMed  Google Scholar 

  15. Weinberg, E.D. 1988. Roles of micronutrients in secondary metabolism of actinomycetes. In: Regulation of Secondary Metabolism in Actinomycetes (Shapiro, S., ed.), pp. 239–261, CRC Press, Boca Raton, Florida.

    Google Scholar 

  16. Weinberg, E.D. 1962. Trace metal control of specific biosynthetic processes. Persp. Biol. Med. 5: 432–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Y.R., Hauck, L. & Demain, A.L. Phosphate, ammonium, magnesium and iron nutrition ofStreptomyces hygroscopicus with respect to rapamycin biosynthesis. Journal of Industrial Microbiology 14, 424–427 (1995). https://doi.org/10.1007/BF01569962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01569962

Key words

Navigation