Skip to main content
Log in

Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Different hosts have been used for recombinant protein production, ranging from simple bacteria, such as Escherichia coli and Bacillus subtilis, to more advanced eukaryotes as Saccharomyces cerevisiae and Pichia pastoris, to very complex insect and animal cells. All have their advantages and drawbacks and not one seems to be the perfect host for all purposes. In this review we compare the characteristics of all hosts used in commercial applications of recombinant protein production, both in the area of biopharmaceuticals and industrial enzymes. Although the bacterium E. coli remains a very often used organism, several drawbacks limit its possibility to be the first-choice host. Furthermore, we show what E. coli strains are typically used in high cell density cultivations and compare their genetic and physiological differences. In addition, we summarize the research efforts that have been done to improve yields of heterologous protein in E. coli, to reduce acetate formation, to secrete the recombinant protein into the periplasm or extracellular milieu, and to perform post-translational modifications. We conclude that great progress has been made in the incorporation of eukaryotic features into E. coli, which might allow the bacterium to regain its first-choice status, on the condition that these research efforts continue to gain momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. However this value can vary greatly, depending on how a biopharmaceutical is defined and the sources consulted.

  2. http://www.biopharma.com/approvals.html consulted on 15 June 2011.

  3. http://www.amfep.org consulted on 17 June 2011.

  4. 1 c-mole equals 1 mole multiplied by the number of C-atoms in the molecule. This concept is used to express mass balances in biochemistry.

References

  1. Abdallah AM, van Pittius NCG, Champion PAD, Cox J, Luirink J, Vandenbroucke-Grauls CMJE, Appelmelk BJ, Bitter W (2007) Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5:883–891

    Article  PubMed  CAS  Google Scholar 

  2. Abu-Qarn M, Eichler J, Sharon N (2008) Not just for eukarya anymore: protein glycosylation in bacteria and archaea. Curr Opin Struct Biol 18:544–550

    Article  PubMed  CAS  Google Scholar 

  3. Andersen KB, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144:114–123

    PubMed  CAS  Google Scholar 

  4. Babaeipour V, Abbas MPH, Sahebnazar Z, Alizadeh R (2010) Enhancement of human granulocyte-colony stimulating factor production in recombinant E. coli using batch cultivation. Bioprocess Biosyst Eng 33:591–598

    Article  PubMed  CAS  Google Scholar 

  5. Babaeipour V, Shojaosadati SA, Khalilzadeh R, Maghsoudi N, Farnoud AM (2010) Enhancement of human gamma-interferon production in recombinant E. coli using batch cultivation. Appl Biochem Biotechnol 160:2366–2376

    Article  PubMed  CAS  Google Scholar 

  6. Babu KR, Swaminathan S, Marten S, Khanna N, Rinas U (2000) Production of interferon-α in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol 53:655–660

    Article  PubMed  CAS  Google Scholar 

  7. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  PubMed  CAS  Google Scholar 

  8. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  PubMed  CAS  Google Scholar 

  9. Barnard GC, Henderson GE, Srinivasan S, Gerngross TU (2004) High level recombinant protein expression in Ralstonia eutropha using T7 RNA polymerase based amplification. Protein Expr Purif 38:264–271

    Article  PubMed  CAS  Google Scholar 

  10. Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

    Article  PubMed  CAS  Google Scholar 

  11. Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  PubMed  CAS  Google Scholar 

  12. Blaas L, Musteanu M, Eferl R, Bauer A, Casanova E (2009) Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnol 9:3

    Article  PubMed  CAS  Google Scholar 

  13. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  14. Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766

    Article  PubMed  CAS  Google Scholar 

  15. Brenac V, Mouz N, Schapman A, Ravault V (2006) Expression optimization and purification process development of an engineered soluble recombinant mouse linker of activation of T cells using surface enhanced laser desorption/ionization-mass spectrometry. Protein Expr Purif 47:533–541

    Article  PubMed  CAS  Google Scholar 

  16. Brüsehaber E, Schwiebs A, Schmidt M, Böttcher D, Bornscheuer UT (2010) Production of pig liver esterase in batch fermentation of E. coli Origami. Appl Microbiol Biotechnol 86:1337–1344

    Article  PubMed  CAS  Google Scholar 

  17. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59:94–102

    Article  PubMed  CAS  Google Scholar 

  18. Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology 50:57–76

    Article  PubMed  CAS  Google Scholar 

  19. Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Jou WM, Contreras R (2001) Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-alpha-d-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 503:173–178

    Article  PubMed  CAS  Google Scholar 

  20. Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  PubMed  Google Scholar 

  21. Chao YP, Law W, Chen PT, Hung WB (2002) High production of heterologous proteins in Escherichia coli using the thermo-regulated T7 expression system. Appl Microbiol Biotechnol 58:446–453

    Article  PubMed  CAS  Google Scholar 

  22. Chauhan V, Singh A, Waheed SM, Singh S, Bhatnagar R (2001) Constitutive expression of protective antigen gene of Bacillus anthracis in Escherichia coli. Biochem Biophys Res Commun 283:308–315

    Article  PubMed  CAS  Google Scholar 

  23. Chen H, Lin M, Hou S (2008) Multiple-copy-gene integration on chromosome of Escherichia coli for beta-galactosidase production. Korean J Chem Eng 25:1082–1087

    Article  CAS  Google Scholar 

  24. Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027

    Article  PubMed  CAS  Google Scholar 

  25. Choi JH, Jeong KJ, Kim SC, Lee SY (2000) Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol 53:640–645

    Article  PubMed  CAS  Google Scholar 

  26. Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 91:876–885

    Google Scholar 

  27. Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69:4737–4742

    Article  PubMed  CAS  Google Scholar 

  28. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  PubMed  CAS  Google Scholar 

  29. Chou CH, Bennett GN, San KY (1994) Effect of modified glucose uptake using genetic engineering techniques on high-level recombinant protein production in Escherichia coli dense cultures. Biotechnol Bioeng 44:952–960

    Article  PubMed  CAS  Google Scholar 

  30. Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 76:521–532

    Article  PubMed  CAS  Google Scholar 

  31. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  PubMed  CAS  Google Scholar 

  32. Contiero J, Beatty C, Kumari S, DeSanti C, Strohl W, Wolfe A (2000) Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli. J Ind Microbiol Biotechnol 24:421–430

    Article  CAS  Google Scholar 

  33. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  PubMed  CAS  Google Scholar 

  34. Dammeyer T, Steinwand M, Krüger SC, Dübel S, Hust M, Timmis KN (2011) Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory. Microb Cell Fact 10:11

    Article  PubMed  CAS  Google Scholar 

  35. Dasgupta S, Navarrete AM, Bayry J, Delignat S, Wootla B, André S, Christophe O, Nascimbeni M, Jacquemin M, Martinez-Pomares L, Geijtenbeek TBH, Moris A, Saint-Remy JM, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S (2007) A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc Natl Acad Sci U S A 104:8965–8970

    Article  PubMed  CAS  Google Scholar 

  36. De Anda R, Lara AR, Hernández V, Hernández-Montalvo V, Gosset G, Bolívar F, Ramírez OT (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab Eng 8:281–290

    Article  PubMed  CAS  Google Scholar 

  37. de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2:2632–2639

    Article  PubMed  CAS  Google Scholar 

  38. de Marco A (2009) Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb Cell Fact 8:26

    Article  PubMed  CAS  Google Scholar 

  39. de Marco A, De Marco V (2004) Bacteria co-transformed with recombinant proteins and chaperones cloned in independent plasmids are suitable for expression tuning. J Biotechnol 109:45–52

    Article  PubMed  CAS  Google Scholar 

  40. De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Van Horen E, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2007) Comparison of different strategies to reduce acetate formation in Escherichia coli. Biotechnol Prog 23:1053–1063

    PubMed  CAS  Google Scholar 

  41. De Mey M, Lequeux GJ, Beauprez JJ, Maertens J, Waegeman HJ, Bogaert INV, Foulquié-Moreno MR, Charlier D, Soetaert WK, Vanrolleghem PA, Vandamme EJ (2010) Transient metabolic modeling of Escherichia coli MG1655 and MG1655 DeltaackA-pta, DeltapoxB Deltapppc ppc-p37 for recombinant beta-galactosidase production. J Ind Microbiol Biotechnol 37:793–803

    Article  PubMed  CAS  Google Scholar 

  42. De Mey M, Maeseneire SD, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700

    Article  PubMed  CAS  Google Scholar 

  43. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  PubMed  CAS  Google Scholar 

  44. Diaz-Ricci JC, Regan L, Bailey JE (1991) Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli. Biotechnol Bioeng 38:1318–1324

    Article  PubMed  CAS  Google Scholar 

  45. Dittrich CR, Vadali RV, Bennett GN, San KY (2005) Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol Prog 21:627–631

    Article  PubMed  CAS  Google Scholar 

  46. Dong H, Nilsson L, Kurland CG (1995) Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177:1497–1504

    PubMed  CAS  Google Scholar 

  47. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  PubMed  CAS  Google Scholar 

  48. Dutta S, Lalitha PV, Ware LA, Barbosa A, Moch JK, Vassell MA, Fileta BB, Kitov S, Kolodny N, Heppner DG, Haynes JD, Lanar DE (2002) Purification, characterization, and immunogenicity of the refolded ectodomain of the Plasmodium falciparum apical membrane antigen 1 expressed in Escherichia coli. Infect Immun 70:3101–3110

    Article  PubMed  CAS  Google Scholar 

  49. Eiberle MK, Jungbauer A (2010) Technical refolding of proteins: do we have freedom to operate? Biotechnol J 5:547–559

    Article  PubMed  CAS  Google Scholar 

  50. Espinosa R, Caballero E, Musacchio A, Silva R (2002) Production of a recombinant, immunogenic protein, P64k, of Neisseria meningitidis in Escherichia coli in fed-batch fermenters. Biotechnol Lett 24:343–346

    Article  CAS  Google Scholar 

  51. Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63:3205–3210

    PubMed  CAS  Google Scholar 

  52. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17

    Article  PubMed  CAS  Google Scholar 

  53. Filloux A, Hachani A, Bleves S (2008) The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology 154:1570–1583

    Article  PubMed  CAS  Google Scholar 

  54. Fisher AC, Haitjema CH, Guarino C, Çelik E, Endicott CE, Reading CA, Merritt JH, Ptak AC, Zhang S, DeLisa MP (2011) Production of secretory and extracellular N-linked glycoproteins in Escherichia coli. Appl Environ Microbiol 77:871–881

    Article  PubMed  CAS  Google Scholar 

  55. Fu ZB, Ng KL, Lam CC, Leung KC, Yip WH, Wong WKR (2006) A two-stage refinement approach for the enhancement of excretory production of an exoglucanase from Escherichia coli. Protein Expr Purif 48:205–214

    PubMed  CAS  Google Scholar 

  56. Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A (2008) Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 7:11

    Article  PubMed  CAS  Google Scholar 

  57. Gellissen G, Melber K, Janowicz ZA, Dahlems UM, Weydemann U, Piontek M, Strasser AW, Hollenberg CP (1992) Heterologous protein production in yeast. Antonie Van Leeuwenhoek 62:79–93

    Article  PubMed  CAS  Google Scholar 

  58. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414

    Article  PubMed  CAS  Google Scholar 

  59. Gill RT, Valdes JJ, Bentley WE (2000) A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli. Metab Eng 2:178–189

    Article  PubMed  CAS  Google Scholar 

  60. Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci U S A 76:106–110

    Article  PubMed  CAS  Google Scholar 

  61. Goodman M (2009) Market watch: sales of biologics to show robust growth through to 2013. Nat Rev Drug Discov 8:837

    Article  PubMed  CAS  Google Scholar 

  62. Gottesman S (1989) Genetics of proteolysis in Escherichia coli. Annu Rev Genet 23:163–198

    Article  PubMed  CAS  Google Scholar 

  63. Gottesman S (1990) Minimizing proteolysis in Escherichia coli: genetic solutions. Methods Enzymol 185:119–129

    Article  PubMed  CAS  Google Scholar 

  64. Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  PubMed  CAS  Google Scholar 

  65. Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587

    Article  PubMed  CAS  Google Scholar 

  66. Gottesman S, Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56:592–621

    PubMed  CAS  Google Scholar 

  67. Goyal D, Sahni G, Sahoo DK (2009) Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresour Technol 100:4468–4474

    Article  PubMed  CAS  Google Scholar 

  68. Grinna L, Tschopp J (1989) Size distribution and general structural features of N-linked oligosaccharides from the methylotrophic yeast Pichia pastoris. Yeast 5:107–115

    Article  PubMed  CAS  Google Scholar 

  69. Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246

    Article  PubMed  CAS  Google Scholar 

  70. Hatahet F, Nguyen VD, Salo KEH, Ruddock LW (2010) Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli. Microb Cell Fact 9:67

    PubMed  Google Scholar 

  71. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  PubMed  CAS  Google Scholar 

  72. Hengge R (2008) The two-component network and the general stress sigma factor RpoS (sigma S) in Escherichia coli. Adv Exp Med Biol 631:40–53

    Article  PubMed  CAS  Google Scholar 

  73. Higgins DR (2001) Overview of protein expression in Pichia pastoris. Curr Protoc Protein Sci 5:7

    PubMed  Google Scholar 

  74. Hodgson J (1994) The changing bulk biocatalyst market. Nat Biotechnol 12:789–790

    Article  CAS  Google Scholar 

  75. Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng Biotechnol 89:73–92

    PubMed  CAS  Google Scholar 

  76. Hollenberg C, Gellissen G (1997) Production of recombinant proteins by methylotrophic yeasts: Pichia pastoris. Curr Opin Biotechnol 8:554–560

    Article  PubMed  CAS  Google Scholar 

  77. Holms WH (1986) The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul 28:69–105

    PubMed  CAS  Google Scholar 

  78. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19:936–949

    Article  PubMed  CAS  Google Scholar 

  79. Hu SY, Wu JL, Huang JH (2004) Production of tilapia insulin-like growth factor-2 in high cell density cultures of recombinant Escherichia coli. J Biotechnol 107:161–171

    Article  PubMed  CAS  Google Scholar 

  80. Jeong H, Barbe V, Lee CH, Vallenet D, Yu DS, Choi SH, Couloux A, Lee SW, Yoon SH, Cattolico L, Hur CG, Park HS, Ségurens B, Kim SC, Oh TK, Lenski RE, Studier FW, Daegelen P, Kim JF (2009) Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J Mol Biol 394:644–652

    Article  PubMed  CAS  Google Scholar 

  81. Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung MH (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr Purif 36:150–156

    Article  PubMed  CAS  Google Scholar 

  82. Jeong KJ, Lee SY (1999) High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl Environ Microbiol 65:3027–3032

    PubMed  CAS  Google Scholar 

  83. Jeong KJ, Lee SY (2002) Excretion of human beta-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl Environ Microbiol 68:4979–4985

    Article  PubMed  CAS  Google Scholar 

  84. Jong WSP, Saurí A, Luirink J (2010) Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21:646–652

    Article  PubMed  CAS  Google Scholar 

  85. Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12:268–274

    Article  PubMed  CAS  Google Scholar 

  86. Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology 151:693–706

    Article  PubMed  CAS  Google Scholar 

  87. Khalilzadeh R, Shojaosadati SA, Maghsoudi N, Mohammadian-Mosaabadi J, Mohammadi MR, Bahrami A, Maleksabet N, Nassiri-Khalilli MA, Ebrahimi M, Naderimanesh H (2004) Process development for production of recombinant human interferon-gamma expressed in Escherichia coli. J Ind Microbiol Biotechnol 31:63–69

    Article  PubMed  CAS  Google Scholar 

  88. Khushoo A, Pal Y, Mukherjee KJ (2005) Optimization of extracellular production of recombinant asparaginase in Escherichia coli in shake-flask and bioreactor. Appl Microbiol Biotechnol 68:189–197

    Article  PubMed  CAS  Google Scholar 

  89. Kim M, Elvin C, Brownlee A, Lyons R (2007) High yield expression of recombinant pro-resilin: lactose-induced fermentation in E. coli and facile purifcation. Protein Expr Purif 52:230–236

    Article  PubMed  CAS  Google Scholar 

  90. Kim YC, Kwon S, Lee SY, Chang HN (1998) Improved production of a bioadhesive precursor protein by fed-batch cultivation of a recombinant Escherichia coli with a pLysS vector. Biotechnol Lett 20:799–803

    Article  CAS  Google Scholar 

  91. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  PubMed  CAS  Google Scholar 

  92. Kleist S, Miksch G, Hitzmann B, Arndt M, Friehs K, Flaschel E (2003) Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Appl Microbiol Biotechnol 61:456–462

    PubMed  CAS  Google Scholar 

  93. Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8:9

    Article  PubMed  CAS  Google Scholar 

  94. Korz DJ, Rinas U, Hellmuth K, Sanders EA, Deckwer WD (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39:59–65

    Article  PubMed  CAS  Google Scholar 

  95. Koyanagi S, Maeda T, Murakami T, Kawatsu K, Sugawara K, Miyatsu Y, Mizokami H (2008) Large-scale production of major house dust mite allergen der f 2mutant (C8/119S) in Escherichia coli. J Biosci Bioeng 106:387–392

    Article  PubMed  CAS  Google Scholar 

  96. Kumar A, Grover S, Sharma J, Batish VK (2010) Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 30:243–258

    Article  PubMed  CAS  Google Scholar 

  97. Kurland CG, Dong H (1996) Bacterial growth inhibition by overproduction of protein. Mol Microbiol 21:1–4

    Article  PubMed  CAS  Google Scholar 

  98. Kweon DH, Han NS, Park KM, Seo JH (2001) Overproduction of Phytolacca insularis protein in batch and fed-batch culture of recombinant Escherichia coli. Proc Biochem 36:537–542

    Article  CAS  Google Scholar 

  99. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  PubMed  CAS  Google Scholar 

  100. León-Rodríguez AD, Rivera-Pastrana D, Medina-Rivero E, Flores-Flores JL, Estrada-Baltazar A, Ordóñez-Acevedo LG, de la Rosa APB (2006) Production of penicillin acylase by a recombinant Escherichia coli using cheese whey as substrate and inducer. Biomol Eng 23:299–305

    Article  PubMed  CAS  Google Scholar 

  101. Lin HY, Mathiszik B, Xu B, Enfors SO, Neubauer P (2001) Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli. Biotechnol Bioeng 73:347–357

    Article  PubMed  CAS  Google Scholar 

  102. Liu Y, Li XL, Zhang DD, Wang Q, Liu Y, Liu DM, Wu CT, Cui CP (2011) Production of hepatopoietin Cn in high-cell-density cultures of recombinant Escherichia coli and detection of its antioxygen activity. Mol Biotechnol 47:111–119

    Article  PubMed  CAS  Google Scholar 

  103. Lotti M, Porro D, Srienc F (2004) Recombinant proteins and host cell physiology. J Biotechnol 109:1–2

    Article  PubMed  CAS  Google Scholar 

  104. Luo Q, Shen YL, Wei DZ, Cao W (2006) Optimization of culture on the overproduction of TRAIL in high-cell-density culture by recombinant Escherichia coli. Appl Microbiol Biotechnol 71:184–191

    Article  PubMed  CAS  Google Scholar 

  105. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  106. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    PubMed  CAS  Google Scholar 

  107. March JC, Eiteman MA, Altman E (2002) Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl Environ Microbiol 68:5620–5624

    Article  PubMed  CAS  Google Scholar 

  108. Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 9:64

    Article  PubMed  CAS  Google Scholar 

  109. Martínez-Martínez I, Kaiser C, Rohde A, Ellert A, García-Carmona F, Sanchez-Ferrer A, Luttmann R (2007) High-level production of Bacillus subtilis glycine oxidase by fed-batch cultivation of recombinant Escherichia coli Rosetta (DE3). Biotechnol Prog 23:645–651

    Article  PubMed  CAS  Google Scholar 

  110. Meerman HJ, Georgiou G (1994) Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Nat Biotechnol 12:1107–1110

    Article  CAS  Google Scholar 

  111. Mergulhão FJM, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23:177–202

    Article  PubMed  CAS  Google Scholar 

  112. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

    Article  PubMed  CAS  Google Scholar 

  113. Murby M, Uhlén M, Stähl S (1996) Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Expr Purif 7:129–136

    Article  PubMed  CAS  Google Scholar 

  114. Nakano K, Rischke M, Sato S, Märkl H (1997) Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol 48:597–601

    Article  PubMed  CAS  Google Scholar 

  115. Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Takahashi S (1999) Production of thermotolerant N-carbamyl-d-amino acid amidohydrolase by recombinant Escherichia coli. J Biosci Bioeng 87:149–154

    Article  PubMed  CAS  Google Scholar 

  116. Narayanan N, Chou CP (2009) Alleviation of proteolytic sensitivity to enhance recombinant lipase production in Escherichia coli. Appl Environ Microbiol 75:5424–5427

    Article  PubMed  CAS  Google Scholar 

  117. Natale P, Brüser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. Biochim Biophys Acta 1778:1735–1756

    Article  PubMed  CAS  Google Scholar 

  118. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    Article  PubMed  CAS  Google Scholar 

  119. Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670

    Article  PubMed  CAS  Google Scholar 

  120. Noguchi Y, Satoh S, Yamaguchi M, Watanabe K, Hayashi M, Yamada H, Saito Y, Kobayashi M, Shimomura K (1996) An approach to high-level production of a mecasermin (somatomedin C) fused protein in Escherichia coli HB101. J Ferment Bioeng 82:128–133

    Article  CAS  Google Scholar 

  121. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8:765–778

    Article  PubMed  CAS  Google Scholar 

  122. Ouellette T, Destrau S, Ouellette T, Zhu J, Roach JM, Coffman JD, Hecht T, Lynch JE, Giardina SL (2003) Production and purification of refolded recombinant human IL-7 from inclusion bodies. Protein Expr Purif 30:156–166

    Article  PubMed  CAS  Google Scholar 

  123. Ow D, Nissom P, Philip R, Oh S, Yap M (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5 α during batch fermentation. Enzyme Microb Tech 39:391–398

    Article  CAS  Google Scholar 

  124. Palomares LA, Estrada-Mondaca S, Ramírez OT (2004) Production of recombinant proteins: challenges and solutions. Methods Mol Biol 267:15–52

    PubMed  CAS  Google Scholar 

  125. Pandhal J, Wright PC (2010) N-Linked glycoengineering for human therapeutic proteins in bacteria. Biotechnol Lett 32:1189–1198

    Article  PubMed  CAS  Google Scholar 

  126. Parsell DA, Sauer RT (1989) Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 3:1226–1232

    Article  PubMed  CAS  Google Scholar 

  127. Pei X, Wang Q, Qiu X, Ying L, Tao J, Xie T (2010) The fed-batch production of a thermophilic 2-deoxyribose-5-phosphate aldolase (DERA) in Escherichia coli by exponential feeding strategy control. Appl Biochem Biotechnol 162:1423–1434

    Article  PubMed  CAS  Google Scholar 

  128. Poo H, Song JJ, Hong SP, Choi YH, Yun SW, Kim JH, Lee SC, Lee SG, Sung MH (2002) Novel high-level constitutive expression system, pHCE vector, for a convenient and cost-effective soluble production of human tumor necrosis factor-α. Biotechnol Lett 24:1185–1189

    Article  CAS  Google Scholar 

  129. Porro D, Gasser B, Fossati T, Maurer M, Bruanduardi P, Sauer M, Mattanovich D (2011) Production of recombinant proteins and metabolites in yeasts: why are these systems better than bacterial production systems? Appl Microbiol Biotechnol 89:939–948

    Article  PubMed  CAS  Google Scholar 

  130. Preston A (2003) Choosing a cloning vector. Methods Mol Biol 235:19–26

    PubMed  CAS  Google Scholar 

  131. Prinz WA, Aslund F, Holmgren A, Beckwith J (1997) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272:15661–15667

    Article  PubMed  CAS  Google Scholar 

  132. Qiao CL, Shen BC, Xing JM, Huang J, Zhang JL, Zhao DX, Yang B (2006) Culture and characteristics of recombinant protein production of an Escherichia coli strain expressing carboxylesterase Bl. Int Biodeterior Biodegrad 58:77–81

    Article  CAS  Google Scholar 

  133. Rainczak K, Bajzert J, Galli J, Selera A, Wieliczko A, Borkowski J, Stefaniak T (2011) Optimization of Salmonella enteritidis recombinant heat shock protein 60 production. Pol J Vet Sci 14:145–146

    PubMed  CAS  Google Scholar 

  134. Rathore AS, Latham P, Kaltenbrunner O, Curling J, Levine H (2004) Costing issues in the production of biopharmaceuticals: manufacturing costs are crucial to overall profit margins. Biopharm Int. http://biopharminternational.findpharma.com/biopharm/article/articleDetail.jsp?id=86832. Accessed 1 Feb 2004

  135. Rawsthorne H, Turner KN, Mills DA (2006) Multicopy integration of heterologous genes, using the lactococcal group II intron targeted to bacterial insertion sequences. Appl Environ Microbiol 72:6088–6093

    Article  PubMed  CAS  Google Scholar 

  136. Ritz D, Lim J, Reynolds CM, Poole LB, Beckwith J (2001) Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Science 294:158–160

    Article  PubMed  CAS  Google Scholar 

  137. Robinson C, Matos CFRO, Beck D, Ren C, Lawrence J, Vasisht N, Mendel S (2011) Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. Biochim Biophys Acta 1808:876–884

    Article  PubMed  CAS  Google Scholar 

  138. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  PubMed  CAS  Google Scholar 

  139. Schmidt R, Bukau B, Mogk A (2009) Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli. Res Microbiol 160:629–636

    Article  PubMed  CAS  Google Scholar 

  140. Semba H, Ichige E, Imanaka T, Atomi H, Aoyagi H (2008) Efficient production of active form of recombinant cassava hydroxynitrile lyase using Escherichia coli in low-temperature culture. Appl Microbiol Biotechnol 79:563–569

    Article  PubMed  CAS  Google Scholar 

  141. Seo JH, Kang DG, Cha HJ (2003) Comparison of cellular stress levels and green-fluorescent-protein expression in several Escherichia coli strains. Biotechnol Appl Biochem 37:103–107

    Article  PubMed  CAS  Google Scholar 

  142. Sevastsyanovich Y, Alfasi S, Overton T, Hall R, Jones J, Hewitt C, Cole J (2009) Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high-quality recombinant proteins. FEMS Microbiol Lett 299:86–94

    Google Scholar 

  143. Sharma R, Katoch M, Srivastava P, Qazi G (2009) Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol 25:2083–2094

    Article  CAS  Google Scholar 

  144. Shiloach J, Kaufman J, Guillard AS, Fass R (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (λDE3) and Escherichia coli JM109. Biotechnol Bioeng 49:421–428

    Article  PubMed  CAS  Google Scholar 

  145. Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13:249–257

    Article  PubMed  CAS  Google Scholar 

  146. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797

    Article  PubMed  CAS  Google Scholar 

  147. Shuo-shuo C, Xue-zheng L, Ji-hong S (2011) Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif 77:166–172

    Article  PubMed  CAS  Google Scholar 

  148. Siguenza R, Flores N, Hernandez G, Martínez A, Bolivar F, Valle F (1999) Kinetic characterization in batch and continuous culture of Escherichia coli mutants affected in phosphoenolpyruvate metabolism: differences in acetic acid production. World J Microbiol Biotechnol 15:587–592

    Article  CAS  Google Scholar 

  149. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    Article  PubMed  CAS  Google Scholar 

  150. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  PubMed  CAS  Google Scholar 

  151. Sivakesavaa S, Xua Z, Chena Y, Hacketta J, Huanga R, Lama E, Lama T, Siua K, Wonga R, Wong W (1999) Production of excreted human epidermal growth factor (hEGF) by an efficient recombinant Escherichia coli system. Proc Biochem 34:893–900

    Article  Google Scholar 

  152. Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4:12

    Article  PubMed  CAS  Google Scholar 

  153. Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    Article  PubMed  CAS  Google Scholar 

  154. Sonoda H, Kumada Y, Katsuda T, Yamaji H (2010) Functional expression of single-chain Fv antibody in the cytoplasm of Escherichia coli by thioredoxin fusion and co-expression of molecular chaperones. Protein Expr Purif 70:248–253

    Article  PubMed  CAS  Google Scholar 

  155. Srinivasan S, Barnard GC, Gerngross TU (2003) Production of recombinant proteins using multiple-copy gene integration in high-cell-density fermentations of Ralstonia eutropha. Biotechnol Bioeng 84:114–120

    Article  PubMed  CAS  Google Scholar 

  156. Szymanski CM, Yao R, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32:1022–1030

    Article  PubMed  CAS  Google Scholar 

  157. Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115:113–128

    Article  PubMed  CAS  Google Scholar 

  158. Takahashi M, Nordén B (1994) Structure of RecA-DNA complex and mechanism of DNA strand exchange reaction in homologous recombination. Adv Biophys 30:1–35

    Article  PubMed  CAS  Google Scholar 

  159. Tegel H, Ottosson J, Hober S (2011) Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J 278:729–739

    Article  PubMed  CAS  Google Scholar 

  160. Tegel H, Tourle S, Ottosson J, Persson A (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expr Purif 69:159–167

    Article  PubMed  CAS  Google Scholar 

  161. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  PubMed  CAS  Google Scholar 

  162. Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing heat-shock proteins. J Biol Chem 271:11141–11147

    Article  PubMed  CAS  Google Scholar 

  163. Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol 9:S2

    Article  PubMed  CAS  Google Scholar 

  164. Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, Gross G, Weich HA, Rinas U (2002) Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 94:185–194

    Article  PubMed  CAS  Google Scholar 

  165. Vallejo LF, Rinas U (2004) Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 3:11

    Article  PubMed  CAS  Google Scholar 

  166. van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13:338–344

    Article  PubMed  CAS  Google Scholar 

  167. Varma A, Boesch BW, Palsson BO (1993) Biochemical production capabilities of Escherichia coli. Biotechnol Bioeng 42:59–73

    Article  PubMed  CAS  Google Scholar 

  168. Varma A, Boesch BW, Palsson BO (1993) Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol 59:2465–2473

    PubMed  CAS  Google Scholar 

  169. Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24:179–185

    Article  PubMed  CAS  Google Scholar 

  170. Vervecken W, Kaigorodov V, Callewaert N, Geysens S, Vusser KD, Contreras R (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70:2639–2646

    Article  PubMed  CAS  Google Scholar 

  171. Vethanayagam JG, Flower AM (2005) Decreased gene expression from T7 promoters may be due to impaired production of active T7 RNA polymerase. Microb Cell Fact 4:3

    Article  PubMed  CAS  Google Scholar 

  172. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-Linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    Article  PubMed  CAS  Google Scholar 

  173. Waegeman H, Beauprez J, Moens H, Maertens J, De Mey M, Foulquié-Moreno MR, Heijnen JJ, Charlier D, Soetaert W (2011) Effect of iclR and arcA knockouts on biomass formation and metabolic fluxes in Escherichia coli K12 and its implications on understanding the metabolism of Escherichia coli BL21 (DE3). BMC Microbiol 11:70

    Article  PubMed  CAS  Google Scholar 

  174. Walsh G (2010) Post-translational modifications of protein biopharmaceuticals. Drug Discov Today 15:773–780

    Article  PubMed  CAS  Google Scholar 

  175. Wardenga R, Hollmann F, Thum O, Bornscheuer U (2008) Functional expression of porcine aminoacylase 1 in E. coli using a codon optimized synthetic gene and molecular chaperones. Appl Microbiol Biotechnol 81:721–729

    Article  PubMed  CAS  Google Scholar 

  176. Warren CE (1993) Glycosylation. Curr Opin Biotechnol 4:596–602

    Article  PubMed  CAS  Google Scholar 

  177. Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of l-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73:95–103

    Article  PubMed  CAS  Google Scholar 

  178. Wong MS, Wu S, Causey TB, Bennett GN, San KY (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10:97–108

    Article  PubMed  CAS  Google Scholar 

  179. Wu J, Zhang L, Lei J, Cai G, Zhu W, Lu D, Jin J (2009) Enhancement of recombinant human ADAM15 disintegrin domain expression level by releasing the rare codons and amino acids restriction. Appl Biochem Biotechnol 157:299–310

    Article  PubMed  CAS  Google Scholar 

  180. Wu PH, Nair GR, Chu IM, Wu WT (2008) High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for alpha-arbutin synthesis. J Ind Microbiol Biotechnol 35:95–101

    Article  PubMed  CAS  Google Scholar 

  181. Xie L, Hall D, Eiteman MA, Altman E (2003) Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl Microbiol Biotechnol 63:267–273

    Article  PubMed  CAS  Google Scholar 

  182. Xu R, Du P, Fan JJ, Zhang Q, Li TP, Gan RB (2002) High-level expression and secretion of recombinant mouse endostatin by Escherichia coli. Protein Expr Purif 24:453–459

    Article  PubMed  CAS  Google Scholar 

  183. Yan SS, Yan J, Shi G, Xu Q, Chen SC, Tian YW (2005) Production of native protein by using Synechocystis sp. pcc6803 DnaB mini-intein in Escherichia coli. Protein Expr Purif 40:340–345

    Article  PubMed  CAS  Google Scholar 

  184. Yang YT, Aristidou AA, San KY, Bennett GN (1999) Metabolic flux analysis of Escherichia coli deficient in the acetate production pathway and expressing the Bacillus subtilis acetolactate synthase. Metab Eng 1:26–34

    Article  PubMed  CAS  Google Scholar 

  185. Yildirim S, Konrad D, Calvez S, Drider D, Prévost H, Lacroix C (2007) Production of recombinant bacteriocin divercin V41 by high cell density Escherichia coli batch and fed-batch cultures. Appl Microbiol Biotechnol 77:525–531

    Article  PubMed  CAS  Google Scholar 

  186. Yoon S, Han MJ, Lee S, Jeong K, Yoo JS (2003) Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol Bioeng 81:753–767

    Article  PubMed  CAS  Google Scholar 

  187. Yoon S, Kim S, Kim JF (2010) Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 4:23–29

    Article  PubMed  CAS  Google Scholar 

  188. Zhang D, Weib P, Fanc L, Liana J, Huanga L, Caia J, Xu Z (2010) High-level soluble expression of hIGF-1 fusion protein in recombinant Escherichia coli. Proc Biochem 45:1401–1405

    Article  CAS  Google Scholar 

  189. Zhao JB, Wei DZ, Tong WY (2007) Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma  ×  antihuman CD3 single-chain bispecific antibody. Appl Microbiol Biotechnol 76:795–800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Special Research Fund (BOF) of Ghent University. The authors like to thank Jo Maertens and Joeri Beauprez for lively scientific discussions and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Waegeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waegeman, H., Soetaert, W. Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol 38, 1891–1910 (2011). https://doi.org/10.1007/s10295-011-1034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1034-4

Keywords

Navigation