Skip to main content
Log in

Production of recombinant proteins and metabolites in yeasts

When are these systems better than bacterial production systems?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant DNA (rDNA) technologies allow the production of a wide range of peptides, proteins and metabolites from naturally non-producing cells. Since human insulin was the first heterologous compound produced in a laboratory in 1977, rDNA technology has become one of the most important technologies developed in the 20th century. Recombinant protein and metabolites production is a multi-billion dollar market. The development of a new product begins with the choice of the cell factory. The final application of the compound dictates the main criteria that should be taken into consideration: (1) quality, (2) quantity, (3) yield and (4) space time yield of the desired product. Quantity and quality are the most predominant requirements that must be considered for the commercial production of a protein. Quantity and yield are the requirements for the production of a metabolite. Finally, space time yield is crucial for any production process. It therefore becomes clear why the perfect host does not exist yet, and why—despite important advances in rDNA applications in higher eukaryotic cells—microbial biodiversity continues to represent a potential source of attractive cell factories. In this review, we compare the advantages and limitations of the principal yeast and bacterial workhorse systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achmuller C, Kaar W, Ahrer K, Wechner P, Hahn R, Werther F, Schmidinger H, Cserjan-Puschmann M, Clementschitsch F, Striedner G, Bayer K, Jungbauer A, Auer B (2007) N(pro) fusion technology to produce proteins with authentic N termini in E. coli. Nat Methods 4:1037–1043

    Article  Google Scholar 

  • Atsumi S, Cann A, Connor M, Shen C, Smith K, Brynildsen M, Chou K, Hanai T, Liao J (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  Google Scholar 

  • Bailey J (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  Google Scholar 

  • Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang RY, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA 3rd (2010) Cloning whole bacterial genomes in yeast. Nucleic Acids Res 38:2558–2569

    Article  CAS  Google Scholar 

  • Boettner M, Steffens C, von Mering C, Bork P, Stahl U, Lang C (2007) Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris — a comparative view on 79 human genes. J Biotechnol 130:1–10

    Article  CAS  Google Scholar 

  • Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503

    Article  CAS  Google Scholar 

  • Carrio MM, Villaverde A (2002) Construction and decostruction of bacterial inclusion bodies. J Biotechnol 96:2–12

    Article  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  • Claassen PAM, van Lier JB, López Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnolol 52:741–755

    Article  CAS  Google Scholar 

  • Clomburg J, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434

    Article  CAS  Google Scholar 

  • Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3

    Article  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27:297–306

    Article  CAS  Google Scholar 

  • Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8:17

    Article  Google Scholar 

  • Fieschko JC, Egan KM, Ritch T, Koski RA, Jones M, Bitter GA (1987) Controlled expression and purification of human immune interferon from high-cell-density fermentations of Saccharomyces cerevisiae. Biotechnol Bioeng 29:1113–1121

    Article  CAS  Google Scholar 

  • Freedonia Group Inc (2009) World enzymes to 2013, www.freedoniagroup.com

  • Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica — a comparison. FEMS Yeast Res 5:1079–1096

    Article  CAS  Google Scholar 

  • Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16:538–545

    Article  CAS  Google Scholar 

  • Gibson D, Benders G, Axelrod K, Zaveri J, Algire M, Moodie M, Montague M, Venter J, Smith H, Hutchison CR (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105:20404–20409

    Article  CAS  Google Scholar 

  • Goodman M (2009) Market watch: Sales of biologics to show robust growth through to 2013. Nat Rev Drug Discov 8:837

    Article  CAS  Google Scholar 

  • Graf A, Dragosits M, Gasser B, Mattanovich D (2009) Yeast systems biotechnology for the production of heterologous proteins. FEMS Yeast Res 9:335–348

    Article  CAS  Google Scholar 

  • Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186

    Article  CAS  Google Scholar 

  • Gurramkonda C, Polez S, Skoko N, Adnan A, Gabel T, Chugh D, Swaminathan S, Khanna N, Tisminetzky S, Rinas U (2010) Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 9:31

    Article  Google Scholar 

  • Hakim R, Benhar I (2009) "Inclonals": IgGs and IgG-enzyme fusion proteins produced in an E. coli expression-refolding system. MAbs 1:281–287

    Article  Google Scholar 

  • Heefner D, Weaver C, Yarus M, Burdzinski L (1992) Method for producing riboflavin with Candida famata. US Patent No. 5164303

  • Hofvendahl K, Hahn-Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources(1). Enzyme Microb Technol 26:87–107

    Article  CAS  Google Scholar 

  • Holz C, Prinz B, Bolotina N, Sievert V, Bussow K, Simon B, Stahl U, Lang C (2003) Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. J Struct Funct Genomics 4:97–108

    Article  CAS  Google Scholar 

  • Huang H, Ridgway D, Gu T, Moo-Young M (2004) Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess Biosyst Eng 27:63–69

    Article  CAS  Google Scholar 

  • Huang H, Liu H, Gan YR (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  CAS  Google Scholar 

  • Ikushima S, Fujii T, Kobayashi O, Yoshida S, Yoshida A (2009) Genetic engineering of Candida utilis yeast for efficient production of l-lactic acid. Biosci Biotechnol Biochem 73:1818–1824

    Article  CAS  Google Scholar 

  • Ingram L, Gomez P, Lai X, Moniruzzaman M, Wood B, Yomano L, York S (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214

    Article  CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  CAS  Google Scholar 

  • Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors SO (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocesses Biosyst Eng 385–393

  • Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010:761042

    Google Scholar 

  • Jones D, Woods D (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  • Jung Y, Kim T, Park S, Lee S (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105:161–171

    Article  CAS  Google Scholar 

  • Keasling J (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  Google Scholar 

  • Kim PJ, Lee DY, Kim TY, Lee KH, Jeong H, Lee SY, Park S (2007) Metabolite essentiality elucidates robustness of Escherichia coli metabolism. P Natl Acad Sci USA 104:13638–13642

  • Kjeldsen T (2000) Yeast secretory expression of insulin precursors. Appl Microbiol Biotechnol 54:277–286

    Article  CAS  Google Scholar 

  • Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stockmann C, Seletzky J, Buchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132:167–179

    Article  CAS  Google Scholar 

  • Koizumi S, Yonetani Y, Maruyama A, Teshiba S (2000) Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol 53:674–679

    Article  CAS  Google Scholar 

  • Larsen MW, Bornscheuer UT, Hult K (2008) Expression of Candida antarctica lipase B in Pichia pastoris and various Escherichia coli systems. Protein Expr Purif 62:90–97

    Article  CAS  Google Scholar 

  • Lartigue C, Vashee S, Algire M, Chuang R, Benders G, Ma L, Noskov V, Denisova E, Gibson D, Assad-Garcia N, Alperovich N, Thomas DW, Merryman C, Hutchison CA 3rd, Smith HO, Venter C, Glass JI (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696

    Article  CAS  Google Scholar 

  • Macdonald G, on http://www.in-pharmatechnologist.com. Accessed 18 June 2009

  • Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheinz M, Sauer M, Altmann F, Gasser B (2009) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29

    Article  Google Scholar 

  • Maurer M, Kuehleitner M, Gasser B, Mattanovich D (2006) Versatile modeling and optimization of fed batch processes for the production of secreted heterologous proteins with Pichia pastoris. Microb Cell Fact 5:37

    Article  Google Scholar 

  • Mazor Y, Van Blarcom T, Carroll S, Georgiou G (2010) Selection of full-length IgGs by tandem display on filamentous phage particles and Escherichia coli fluorescence-activated cell sorting screening. FEBS J 277:2291–2303

    Article  CAS  Google Scholar 

  • McHunu NP, Singh S, Permaul K (2009) Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 141:26–30

    Article  CAS  Google Scholar 

  • McLaughlin B, Reilly D (2008) Expression of soluble full length antibodies in E. coli. 5th Recombinant Protein Production Conference. Sardinia, Italy

  • Mergulhão F, Taipa M, Cabral J, Monteiro G (2004) Evaluation of bottlenecks in proinsulin secretion by Escherichia coli. J Biotechnol 109:31–43

    Article  Google Scholar 

  • Najafpour DG (2006) Biochemical engineering and biotechnology. Elsevier, Amsterdam

    Google Scholar 

  • Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31:1661–1670

    Article  CAS  Google Scholar 

  • Okano K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Appl Microbiol Biotechnol 85:413–423

    Article  CAS  Google Scholar 

  • Olmos-Soto J, Contreras-Flores R (2003) Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis. Appl Microbiol Biotechnol 62:369–373

    Article  CAS  Google Scholar 

  • Otero J, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460

    Article  CAS  Google Scholar 

  • Panda AK (2003) Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli. Adv Biochem Eng Biotechnol 85:43–93

    CAS  Google Scholar 

  • Pandhal J, Wright PC (2010) N-Linked glycoengineering for human therapeutic proteins in bacteria. Biotechnol Lett 32:1189–1198

    Article  CAS  Google Scholar 

  • Park EJ, Zhang JH, Tajima S, Dwiarti L (2007) Isolation of Ashbya gossypii mutant for an improved riboflavin production targeting for biorefinery technology. J Appl Microbiol 103:468–476

    Article  CAS  Google Scholar 

  • Peralta-Yahya P, Keasling J (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  Google Scholar 

  • Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Mol Biotechnol 31:245–259

    Article  CAS  Google Scholar 

  • Potgieter TI, Cukan M, Drummond JE, Houston-Cummings NR, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey TW, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d'Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139:318–325

    Article  CAS  Google Scholar 

  • Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C (2004) Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5:29–44

    Article  CAS  Google Scholar 

  • Rude M, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 15 years research on lactic acid production with yeast — ready for the market? Biotechnol Genet Eng Rev 27:1–28

    Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 363–372

  • Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13:249–257

    Article  CAS  Google Scholar 

  • Simmons L, Reilly D, Klimowski L, Raju T, Meng G, Sims P, Hong K, Shields R, Damico L, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147

    Article  CAS  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis S, Long S (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  • Sørensen HP (2010) Towards universal systems for recombinant gene expression. Microb Cell Fact 9:27

    Article  Google Scholar 

  • Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53:509–516

    Article  CAS  Google Scholar 

  • Steen E, Chan R, Prasad N, Myers S, Petzold C, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    Article  Google Scholar 

  • Steen E, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre S, Keasling J (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  Google Scholar 

  • Stolz A, Wolf DH (2010) Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochim Biophys Acta 1803:694–705

    Article  CAS  Google Scholar 

  • Sugimoto T, Morimoto A, Nariyama M, Kato T, Park E (2010) Isolation of an oxalate-resistant Ashbya gossypii strain and its improved riboflavin production. J Ind Microbiol Biotechnol 37:57–64

    Article  CAS  Google Scholar 

  • Sundström H, Enfors S (2008) Software sensors for fermentation processes. Bioprocess Biosyst Eng 31:145–152

    Article  Google Scholar 

  • Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL (2009) High yield production of heterologous proteins with Escherichia coli. Defence Sci J 59:137–146

    CAS  Google Scholar 

  • Valli M, Sauer M, Branduardi P, Borth N, Porro D, Mattanovich D (2006) Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH. Appl Environ Microbiol 72:5492–5499

    Article  CAS  Google Scholar 

  • Venkatesh KV (1997) Simultaneous saccharification and fermentation of cellulose to lactic acid. Bioresour Technol 62:91–98

    Article  CAS  Google Scholar 

  • Vuolanto A, von Weymarn N, Kerovuo J, Ojamo H, Leisola M (2001) Phytase production by high cell density culture of recombinant Bacillus subtilis. Biotechnol Lett 761–766

  • Waites MJ, Morgan NL, Rockey JS, Higton G (2001) Industrial microbiology: an introduction. Blackwell Science, Oxford

    Google Scholar 

  • Walsh G (2005) Therapeutic insulins and their large-scale manufacture. Appl Microbiol Biotechnol 67:151–159

    Article  CAS  Google Scholar 

  • Westers L, Westers H, Quax WJ (2004) Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 1694:299–310

    Article  CAS  Google Scholar 

  • Wu Q, Chen T, Gan Y, Chen X, Zhao X (2007) Optimization of riboflavin production by recombinant Bacillus subtilis RH44 using statistical designs. Appl Microbiol Biotechnol 76(4):783–794

    Article  CAS  Google Scholar 

  • Yan Y, Liao J (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  CAS  Google Scholar 

  • Yang T, Kim T, Kang H, Lee S, Lee E, Lim S, Oh S, Song A, Park S, Lee S (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160

    Article  CAS  Google Scholar 

  • Yuwono SD, Kokugan T (2008) Study of the effects of temeprature and pH on lactic acid production from fresh cassava roots in tofu liquid watse by Streptococcus bovis. Biochem Eng J 40:175–183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian FAR 2009 12-1-5140000-65. This work was supported by the Austrian Science Fund (FWF), projects I37-B03 and L391-B11, and the Austrian Research Promotion Agency (program FHplus), projects OPTIPRO and METORGANIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Porro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porro, D., Gasser, B., Fossati, T. et al. Production of recombinant proteins and metabolites in yeasts. Appl Microbiol Biotechnol 89, 939–948 (2011). https://doi.org/10.1007/s00253-010-3019-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3019-z

Keywords

Navigation