Skip to main content
Log in

Process development for production of recombinant human interferon-γ expressed in Escherichia coli

  • Original Paper
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

A simple fed-batch process was carried out using constant and variable specific growth rates for high-cell-density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-γ(hIFN-γ). The feeding rate was adjusted to achieve an appropriate specific growth rate. The dissolved oxygen level was maintained at 20–30% of air saturation by control of airflow and stirrer speed and, where necessary, by enrichment of inlet air with pure oxygen. Glucose was the sole source of carbon and energy and was provided by following a simple exponential feeding rate. The final cell density in the fed-batch fermentation with constant and variable specific growth rate feeding strategies was ~100 g dry cell wt l−1 after 36 and 20 h, respectively. The final specific yield and overall productivity of recombinant hIFN-γ in the variable specific growth rate strategy were 0.35 g rHu-IFN-γ g−1 dry cell wt and 0.9 g rHu-IFN-γ l−1 h−1, respectively. A new chromatographic purification procedure involving anion exchange and cation exchange chromatographies was developed for purification of rHu-IFN-γ from inclusion bodies. The established purification process is reproducible and the total recovery of rHu-IFN-γ was ~30% (100 mg rHu-IFN-γ g−1 dry cell wt). The purity of the rHu-IFN-γ was determined using HPLC. Sterility, pyrogenicity, and DNA content tests were conducted to assure the absence of toxic materials and other components of E. coli in the final product. The final purified rHu-IFN-γ has a specific antiviral activity of ~2×107 IU/mg protein, as determined by viral cytopathic effect assay. These results certify the product for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–c

Similar content being viewed by others

References

  1. Arora D, Khanna N (1996) Method for increasing the yield of properly folded recombinant human interferon form inclusion bodies. J Biotechnol 52:127–133

    Article  CAS  PubMed  Google Scholar 

  2. Babu KR, Swaminathan S, Marten S, Khanna N, Rinas U (2000) Production of interferon-α in high cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl Microbiol Biotechnol 53:665–660

    Article  Google Scholar 

  3. Blechova R, Pivodova D (2001) Limulus amoebocyte lysate (LAL) test- An alternative method for detection of bacterial endotoxins. ACTA VET. BRNO 70:291–296

    CAS  Google Scholar 

  4. British Pharmacopoeia 2001, ISBN 011322446 X

  5. Cohen J, McConnell JS (1984) Observations on the measurement and evaluation of endotoxemia by a quantitative limulus lysate microassay. J Infectious Diseases 150(6): 916–924

    CAS  Google Scholar 

  6. Farrar AM, Schreiber RD (1993) The molecular cell biology of interferon-γ and its receptor. Annu Rev Immunol 11:571–611

    Article  CAS  PubMed  Google Scholar 

  7. Isaacs A, Lindenmann J (1957) Virus interference. 1. The interferon. Proc R Soc London Ser B 147:258–267

    CAS  Google Scholar 

  8. Kleman GL, Strohl WR (1994) Development in high cell density and high productivity microbial fermentation. Curr Opin Biotechnol 5:180–186

    CAS  PubMed  Google Scholar 

  9. Kung H, Sugino H, Honda S (1994) Immune interferon. US Patent 5,278,286

  10. Lee S Y (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    PubMed  Google Scholar 

  11. Lim H-K, Jung K-H, Park D-h, Chung S-I (2000) Production characteristics of interferon-α using anl-arabinose promoter system in a high-cell-density culture. Appl Microbiol Biotechnol 53:201–208

    Article  CAS  PubMed  Google Scholar 

  12. Mamane Y, Heylbroeck C, Genin P, Algarte M, Servant MJ, LePage C, DeLuca C, Kwon H, Lin R, Hiscott J (1999) Interferon regulatory factors: the next generation. Gene 237:1-14

    Article  CAS  PubMed  Google Scholar 

  13. Miao F, Kompala DS (1992) Overexpression of cloned genes using recombinant Escherichia coli regulated by a T7 promoter: I. Batch cultures and kinetic modeling. Biotechnol Bioeng 40:787–796

    Google Scholar 

  14. Nagabhusan TL, Trotta P, Seeling GF, Kosecki RA (1988) Process for the purification of gamma interferon. US Patent 4,751,078

  15. Panda AK, Khan RH, Appa Rao KBC, Totey SM (1999) Kinetics of inclusion body production in batch and high cell density fed-batch culture of Escherichia coli expressing ovine growth hormone. J Biotechnol 75:161–172

    Article  CAS  PubMed  Google Scholar 

  16. Pechenov SE, Tikhonov RV, Shingarova LN, Korobko VG, Yakimov SA, Klyushnichenko VE, Babajantz AA, Beliaev DL, Kuznetzov VP, Shvetz VI, Wulfson AN (2002) Methods for preparation of recombinant cytokine proteins V. mutant analogues of human interferon-gamma with higher stability and activity. Protein Expr Purif 24:173–180

    Article  CAS  PubMed  Google Scholar 

  17. Perez L, Vega J, Chuay C, Menendez A, Ubieta R, Montero M, Padron G, Silva A, Santizo C, Besada V, Herrera L (1990) Production and characterization of human gamma interferon from Escherichia coli. Appl Microbiol Biotechnol 33:429–434

    CAS  PubMed  Google Scholar 

  18. Riesenberg D (1991) High cell-density cultivation of Escherichia coli. Curr Opin Biotechnol 2:380–384

    CAS  PubMed  Google Scholar 

  19. Riesenberg D, Guthke R (1999) High-cell-density cultivation of microorganisms. Appl Microbiol Biotechnol 51:422–430

    CAS  PubMed  Google Scholar 

  20. Rinderknecht E, O’Connor BH, Rodriguez H (1984) Natural human interferon-gamma. Complete amino acid sequence and determination of site of glycosylation. J Biol Chem 259:6790–6797

    CAS  PubMed  Google Scholar 

  21. Roth RI, Levin J (1994) Measurement of endotoxin levels in hemoglobin preparations. Methods in Enzymology 231:75–91

    CAS  PubMed  Google Scholar 

  22. Rothen S A, Sauer M, Sonnleitner B, Witholt B (1998) Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium. Biotechnology and Bioengineering 58: 92–100

    Article  CAS  PubMed  Google Scholar 

  23. Rubb MR, Tedesco JL (1989) Measuring contaminating DNA in bioreactor derived monoclonals. Bio/technology 7:343–347

    Google Scholar 

  24. Sen GC, Lengyel P (1992) The interferon system. J Biol Chem 267(8): 5017–5020

    CAS  PubMed  Google Scholar 

  25. Sheldon EL, Nagainis PA, Kung VT (1989) Detection of total DNA with single-stranded DNA binding protein conjugates. Biochemical and Biophisical Research communications 165(1): 474–480

    CAS  Google Scholar 

  26. Shiloach J, Kaufman J, Guillard A S, Fass R (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli JM109. Biotechnology and Bioengineering, 49:421–428

    Google Scholar 

  27. Van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high cell density fermentation. Biotechnol Bioeng 57:71–78

    PubMed  Google Scholar 

  28. Vandenbroeck K, Martens E, D’Andrea S, Billiau A (1993) Refolding and single step purification of porcine interferon-γ from Escherichia coli inclusion bodies: conditions for reconstitution of dimeric IFN-γ. Eur J Biochem 215:481–486

    CAS  PubMed  Google Scholar 

  29. Yang X-M, Xu L, Eppstein L (1992) Production of recombinant human interferon-α1 by Escherichia coli using a computer-controlled cultivation process. J Biotechnol 23:291–301

    Article  CAS  PubMed  Google Scholar 

  30. Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Bio/Technology 10:1150–1156

    Google Scholar 

  31. Yoon SK, Kang WK, Park TH (1994) Fed-batch operation of recombinant Escherichia coli containing trp promoter with controlled specific growth rate. Biotechnol Bioeng 43:995–999

    CAS  Google Scholar 

  32. Yousefi S, Escobar M, Gouldin CW (1985) A practical cytopathic effect/dye uptake interferon assay for routine use in the clinical laboratory. Am J Clin Pathol 83(6): 735–740

    CAS  PubMed  Google Scholar 

  33. Zhang XW, Sun T, Liu X, Gu DX. Huang XN (1998) Human growth hormone production by high cell density fermentation of recombinant Escherichia coli. Process Biochem 33(6): 683–686

    Article  CAS  Google Scholar 

  34. Zhang Z, Tong K-T, Belew M, Petterson T, Janson JC (1992) Production, purification and characterization of recombinant human interferon-γ. J Chromatogr 604:143–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for part of this research by the Noor Research and Educational Institute and the Shafa-e-Sari Antibiotic Producing Company, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shojaosadati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalilzadeh, R., Shojaosadati, S.A., Maghsoudi, N. et al. Process development for production of recombinant human interferon-γ expressed in Escherichia coli . J IND MICROBIOL BIOTECHNOL 31, 63–69 (2004). https://doi.org/10.1007/s10295-004-0117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-004-0117-x

Keywords

Navigation