Skip to main content
Log in

Hairy root biotechnology—indicative timeline to understand missing links and future outlook

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Agrobacterium rhizogenes-mediated hairy roots (HR) were developed in the laboratory to mimic the natural phenomenon of bacterial gene transfer and occurrence of disease syndrome. The timeline analysis revealed that during 90 s, the research expanded to the hairy root-based secondary metabolite production and different yield enhancement strategies like media optimization, up-scaling, metabolic engineering etc. An outlook indicates that much emphasis has been given to the strategies that are helpful in making this technology more practical in terms of high productivity at low cost. However, a sequential analysis of literature shows that this technique is upgraded to a biotechnology platform where different intra- and interdisciplinary work areas were established, progressed, and diverged to provide scientific benefits of various hairy root-based applications like phytoremediation, molecular farming, biotransformation, etc. In the present scenario, this biotechnology research platform includes (a) elemental research like hairy root-mediated secondary metabolite production coupled with productivity enhancement strategies and (b) HR-based functional research. The latter comprised of hairy root-based applied aspects such as generation of agro-economical traits in plants, production of high value as well as less hazardous molecules through biotransformation/farming and remediation, respectively. This review presents an indicative timeline portrayal of hairy root research reflected by a chronology of research outputs. The timeline also reveals a progressive trend in the state-of-art global advances in hairy root biotechnology. Furthermore, the review also discusses ideas to explore missing links and to deal with the challenges in future progression and prospects of research in all related fields of this important area of plant biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HRCs:

Hairy root cultures

ME:

Metabolic engineering

GE:

Genetic engineering

SM:

Secondary metabolites

References

  • Banerjee S, Singh S, Rahman LU (2012) Biotransformation studies using hairy root cultures—a review. Biotechnol Adv 30:461–468

    Article  CAS  PubMed  Google Scholar 

  • Bhagyalakshmi N, Thimmaraju R (2009) Bioreactor for cultivation of red beet hairy roots and in situ recovery of primary and secondary metabolites. Eng Life Sci 9:227–238

    Article  Google Scholar 

  • Bhagyalakshmi N, Thimmaraju R (2012) Downstream processing of red beet hairy roots. In: Bhagyalakshmi N (ed) Red beet biotechnology. Springer, New York, pp 335–372

    Google Scholar 

  • Boominathan R, Doran PM (2003a) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyper-accumulator. Biotechnol Bioeng 83:158–167

    Article  CAS  PubMed  Google Scholar 

  • Boominathan R, Doran PM (2003b) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    Article  CAS  PubMed  Google Scholar 

  • Chandra S (2012) Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol Lett 34:407–415

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395

    Article  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempe J (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Choi DW, Jung J, Ha YI, Park HW, In DS, Chung HJ, Liu JR (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557–566

    Article  CAS  PubMed  Google Scholar 

  • Christey MC, Braun RH (2005) Production of hairy root cultures and transgenic plants by Agrobacterium rhizogenes-mediated transformation. Methods Mol Biol 286:47–60

    CAS  PubMed  Google Scholar 

  • Citovsky V, Kozlovsky SV, Lacroix B, Zaltsman AM, Gelvin SB, Vyas SDY, Tovkach A, Tzfira T (2007) Biological systems of the host cell involved in Agrobacterium infection. Cell Microbiol 9:9–20

    Article  CAS  PubMed  Google Scholar 

  • Cloutier M, Bouchard-Marchand E, Perrier M, Jolicoeur M (2008) A predictive nutritional model for plant cells and hairy roots. Biotechnol Bioeng 99:189–200

    Article  CAS  PubMed  Google Scholar 

  • Curtis WR (2010) Hairy roots, bioreactor growth. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology 1–20

  • Gago J, Pérez-Tornero O, Landín M, Burgos L, Gallego PP (2011) Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: a practical case of data mining using apricot databases. J Plant Physiol 168:1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Gago J, Martínez-Núñez L, Landín M, Flexas J, Gallego PP (2014) Modeling the effects of light and sucrose on in vitro propagated plants: a multiscale system analysis using artificial intelligence technology. PLoS ONE 9(1):e85989. doi:10.1371/journal.pone.0085989

    Article  PubMed Central  PubMed  Google Scholar 

  • Gallego PP, Gago J, Landín M (2011) Artificial neural networks technology to model and predict plant biology process. In: Kenji Suzuki (ed) Artificial neural networks—methodological advances and biomedical applications. ISBN: 978-953-307-243-2. doi: 10.5772/14945

  • Gaume A, Komarnytsky S, Borisjuk N, Raskin I (2003) Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 21:1188–1193

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and interaction. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gelvin SB (2010) Plant proteins involved in Agrobacterium mediated genetic transformation. Ann Rev Phytopathol 48:45–68

    Article  CAS  Google Scholar 

  • Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185

    Article  CAS  PubMed  Google Scholar 

  • Georgiev MI, Jutta LM, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. Med Plant Biotechnol 156-175

  • Georgiev MI, Agostini E, Ludwig-Muller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30:528–537

    Article  CAS  PubMed  Google Scholar 

  • Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C (2008) Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. Mol Plant Microbe Interact 21:518–524

    Article  CAS  PubMed  Google Scholar 

  • Goel MK, Mehrotra S, Kukreja AK (2011) Elicitor-induced cellular and molecular events are responsible for productivity enhancement in hairy root cultures: an insight study. Appl Biochem Biotechnol 165:1342–1355

    Article  CAS  PubMed  Google Scholar 

  • Goklany S, Loring RH, Glick J, Lee-Parsons CW (2009) Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Biotechnol Prog 25:1289–1296

    Article  PubMed  Google Scholar 

  • Grech-Baran M, Sykłowska-Baranek K, Krajewska-Patan A, Wyrwał A, Pietrosiuk A (2014) Biotransformation of cinnamyl alcohol to rosavins by non-transformed wild type and hairy root cultures of Rhodiola kirilowii. Biotechnol Lett 36:649–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guillon S, Jocelyne TG, Pati PK, Marc R, Pascal G (2006a) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403–409

    Article  CAS  PubMed  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006b) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    Article  CAS  PubMed  Google Scholar 

  • Han B, Linden JC, Gujarathi NP, Wickramasinghe SR (2004) Population balance approach to modeling hairy root growth. Biotechnol Prog 20:872–879

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt EM (1934) Life history of the hairy root organism in relation to its pathogenesis on nursery apple trees. J Agri Res 10:857–885

    Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  • Ibáňez SG, Medina MI, Agostini E (2011) Phenol tolerance, changes of antioxidative enzymes and cellular damage in transgenic tobacco hairy roots colonized by arbuscular mycorrhizal fungi. Chemosphere 83:700–705

    Article  PubMed  Google Scholar 

  • Janoušková M, Vosátka M (2005) Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita. Mycorrhiza 15:217–224

    Article  PubMed  Google Scholar 

  • Kawaguchi K, Hirotani M, Yoshikawa T, Furuya T (1990) Biotransformation of digitoxigenin by ginseng hairy root cultures. Phytochem 29:837–843

    Article  CAS  Google Scholar 

  • Kim YJ, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10

    Article  CAS  Google Scholar 

  • Komarnytsky S, Borisjuk N, Yakoby N, Garvey A, Raskin I (2006) Co-secretion of protease inhibitor stabilizes antibodies produced by plant roots. Plant Physiol 141:1185–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lacroix B, Kozlovsky SV, Citovsky V (2008) Recent patents on Agrobacterium-mediated gene and protein transfer for research and biotechnology. Recent Pat DNA Gene Seq 2:69–81

    Article  CAS  PubMed  Google Scholar 

  • Leduc M, Tikhomiroff C, Cloutier M, Perrier M, Jolicoeur M (2006) Development of a kinetic metabolic model: application to Catharanthus roseus hairy root. Bioprocess Biosyst Eng 28:295–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin HW, Kwok KH, Doran PM (2003) Production of podophyllotoxin using cross species coculture of Linum flavum hairy roots and Podophyllum hexandrum cell suspensions. Biotechnol Prog 19:1417–1426

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Towler MJ, Medrano G, Cramer CL, Weathers PJ (2009) Production of mouse interleukin-12 is greater in tobacco hairy roots grown in a mist reactor than in an airlift reactor. Biotechnol Bioeng 102:1074–1086

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Sun W, Liu CZ (2011) Computational fluid dynamics modeling of mass transfer behavior in a bioreactor for hairy root culture. I. Model development and experimental validation. Biotechnol Prog 27:1661–1671

    Article  PubMed  Google Scholar 

  • Madsen EB, Meritxell AL, Christina G, Juanying Y, Syndi V, Angelique B, Lene K, Simona R, Ole NJ, Jens S, Martin P (2011) Auto phosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signaling in cooperation with Nod factor receptor 5. The Plant J 65:404–417

    Article  CAS  PubMed  Google Scholar 

  • Mairet F, Villon P, Boitel-Conti M, Shakourzadeh K (2010) Modeling and optimization of hairy root growth in fed-batch process. Biotechnol Prog 26:847–856

    Article  CAS  PubMed  Google Scholar 

  • Makhzoum AB, Sharma P, Bernards MA, Trémouillaux-Guiller J (2013) Hairy Roots: An Ideal Platform for Transgenic Plant Production and Other Promising Applications. In: Gang DR (ed) Phytochemicals, Plant Growth, and the Environment, 95 Recent Advances in Phytochemistry 42. Springer, New York. doi:10.1007/978-1-4614-4066-6_6

    Google Scholar 

  • Marchev A, Georgiev V, Ivanov I, Pavlov A (2012) Cultivation of diploid and tetraploid hairy roots of Datura stramonium L. in stirred tank bioreactor for tropane alkaloids production. J BioSci Biotechnol 1:211–216

    Google Scholar 

  • Mehrotra S, Rahman LU, Kukreja AK (2010) An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnol Appl Biochem 56:161–172. doi:10.1042/BA20100171

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Prakash O, Khan F, Kukreja AK (2013a) Efficiency of neural network-based combinatorial model predicting optimal culture conditions for maximum biomass yields in hairy root cultures. Plant Cell Rep 32:309–317. doi:10.1007/s00299-012-1364-3

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2013b) Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina. Plant Cell Tiss Org cult 11:377–384

    Article  Google Scholar 

  • Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013c) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tiss Org Cult 114:31–38

    Article  CAS  Google Scholar 

  • Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10

    Article  CAS  PubMed  Google Scholar 

  • Morgan JA, Shanks JV (2000) Determination of metabolic rate-limitations by precursor feeding in Catharanthus roseus hairy root cultures. J Biotechnol 79:137–145

    Article  CAS  PubMed  Google Scholar 

  • Needlekoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  Google Scholar 

  • Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol-genes in the formation of hairy roots. Physiol Plantarum 100:463–473

    Article  CAS  Google Scholar 

  • Nopo L, Woffenden BJ, Reed DG, Buswell S, Zhang C, Medina Bolivar F (2012) Super-promoter: TEV, a powerful gene expression system for tobacco hairy roots. Methods Mol Biol 824:501–526

    Article  CAS  PubMed  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Oktem HA, Eyidogan F, Selcuk F, Oz MT, Teixeira JA, Yucel M (2008) Revealing response of plants to biotic and abiotic stresses with microarray technology. Genes, Genomes and Genomics 2:14–48

    Google Scholar 

  • Ono NN, Li T (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    Article  CAS  PubMed  Google Scholar 

  • Palavalli RR, Srivastava S, Srivastava AK (2012) Development of a mathematical model for growth and oxygen transfer in in vitro plant hairy root cultivations. Appl Biochem Biotechnol 167:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Peebles CAM, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    Article  CAS  PubMed  Google Scholar 

  • Pham NB, Holger S, Michael W (2012) Production and secretion of recombinant thaumatin in tobacco hairy root cultures. Biotechnol J 7:537–545

    Article  CAS  PubMed  Google Scholar 

  • Prakash O, Mehrotra S, Krishna A, Mishra BN (2010) A neural network approach for the prediction of in vitro culture parameters for maximum biomass yields in hairy root cultures. J Theor Boil 265:570–585

    Google Scholar 

  • Rhodes MCJ, Hilton M, Parr AJ, Hamill JD, Robins RJ (1986) Nicotine production by hairy root cultures of Nicotiana rustica: fermentation and product recovery. Biotechnol Lett 8:415–420

    Article  CAS  Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy root of nursery apple trees. J Agri Res 41:507–540

    Google Scholar 

  • Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010) Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 46:932–939

    CAS  PubMed  Google Scholar 

  • Seki H, Nishizawa T, Tanaka N, Niwa Y, Yoshida S, Muranaka T (2005) Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59:793–807

    Article  CAS  PubMed  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant “hairy root” culture. Curr Opin Biotechnol 10:151–155

    Article  CAS  PubMed  Google Scholar 

  • Shinde AN, Malpathak N, Fulzele DP (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioproc Eng 14:288–294

    Article  CAS  Google Scholar 

  • Sinkar VP, White FF, Gordon MP (1987) Molecular biology of Ri-plasmid—a review. J Biosci 11:47–57

    Article  CAS  Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Sosa Alderete LG, Ibáñez SG, Agostini E, Medina MI (2012) Phytoremediation of phenol at pilot scale by tobacco hairy roots. Int J Environ Sci 3:398–407

    CAS  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Negi AS, Ajayakumar PV, Khan SA, Banerjee S (2012) Atropa belladonna hairy roots: orchestration of concurrent oxidation and reduction reactions for biotransformation of carbonyl compounds. Appl Biochem Biotechnol 166:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Kaur R, Chattopahyay SK, Banerjee S (2013) Production of industrially important cosmaceutical and pharmaceutical derivatives of betuligenol by Atropa belladonna hairy root mediated biotransformation. Ind Crops Prod 44:171–175

    Article  CAS  Google Scholar 

  • Stewart FC, Rolf FM, Hall FH (1900) A fruit disease survey of western New York in 1900. NY Agri Exp Stat 191:291–331

    Google Scholar 

  • Stiles AR, Liu CZ (2013) Hairy root culture: bioreactor design and process intensification. Adv Biochem Eng Biotechnol. doi:10.1007/10_2013_181

    PubMed  Google Scholar 

  • Tepfer D (1989) Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution. In: Kosuge T, Nester E (eds) Plant–microbe interactions. McGraw-Hill, New York, pp 294–342

    Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375–383

    Article  CAS  PubMed  Google Scholar 

  • Uozumi N (2004) Large-scale production of hairy root. Adv Biochem Eng Biotechnol 91:75–103

    CAS  PubMed  Google Scholar 

  • Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol - Plant 43:383–403

    Article  CAS  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Lal RK (2014) Regulation of vincamine biosynthesis and associated effects through abiotic elicitation, cyclooxygenase inhibition and precursor feeding of bioreactor grown Vinca minor hairy roots. Appl Biochem Biotechnol 173:663–672

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Eng Biotechnol 134:55–89

    CAS  PubMed  Google Scholar 

  • Weerasinghe RR, Bird DM, Nina SA (2005) Root-knot nematodes and bacterial Nod factors elicit common signal transduction events in Lotus japonicas. Proc Nat Acad Sci 102:3147–3152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wongsamuth R, Doran PM (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Ng J, Shi M, Wu SJ (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria coculture process. Appl Microbiol Biotechnol 77:543–550

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Zhang S, Yang D, Zhang J, Liang Z (2014) Effects of Streptomyces pactum Act 12 on Salvia miltiorrhiza hairy root growt and tanshinone synthesis and its mechanisms. Appl Biochem Biotechnol 173:883–893

    Article  CAS  PubMed  Google Scholar 

  • Zamanzedeh Z, Ehsanpour AA (2011) Assessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene. Prog Biol Sci 1:17–23

    Google Scholar 

  • Zhou ML, Zhu XM, Shao JR, Tang JR, Wu YM (2011) Production and metabolic engineering of bioactive substances in plant hairy root culture. Appl Microbiol Biotechnol 90(4):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Zhou ML, Tang YX, Wu YM (2013) Plant hairy roots for remediation of aqueous pollutants. Plant Mol Biol Rep 31:1–8

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to the Director, CIMAP (CSIR), for providing the facilities. Financial support rendered by the Department of Science and Technology (DST), New Delhi, to SM and by the Council of Scientific and Industrial Research (CSIR), New Delhi, to VS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti Mehrotra.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Comparison of angiosperm families explored for the generation of hairy root cultures. The number of genera explored in each family is given in parentheses. Data collected from SCOPUS, PubMed, and Sci-Finder database (DOC 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrotra, S., Srivastava, V., Rahman, L.U. et al. Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252, 1189–1201 (2015). https://doi.org/10.1007/s00709-015-0761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0761-1

Keywords

Navigation