Skip to main content
Log in

Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L.

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Common bean Phaseolus vulgaris L. has been shown to be a recalcitrant plant to induce somatic embryogenesis (SE) under in vitro conditions. We used an alternative strategy to induce SE in common bean based upon the use of a cytokinin (BAP) coupled with osmotic stress adaptation instead of SE response that is induced by auxins. Explants derived from zygotic embryos of common bean were subjected to osmotic stress (sucrose 12 % w/v, 0.5 M) in the presence of BAP 10 mg/L and adenine free base 40 mg/L to induce somatic embryos from specific competent cells of the apical meristem and cotyledonary node. Somatic embryos were obtained from the competent cells in a direct response (direct SE). In a secondary response (secondary SE), those somatic embryos formed proembryogenic masses (PEM) that originated/developed into secondary somatic embryos and showed the SE ontogeny. Maturation of somatic embryos was achieved by using different osmolality media and converted to plants. Full-visible light spectrum was necessary to achieve efficient plant regeneration. Long-term recurrent SE was demonstrated by propagation of PEM at early stages of SE. This protocol is currently being applied for stable genetic transformation by means of Agrobacterium tumefaciens and bioballistics as well as for basic biochemical and molecular biology experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allavena A, Rossetti L (1983) Efforts in somatic embryogenesis of Phaseolus vulgaris L. Acta Horticult 131:239–246

    Google Scholar 

  • Aragao FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Reich EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93:142–150

    Article  CAS  PubMed  Google Scholar 

  • Aragao FJL, Ribeiro SG, Barros LMG, Brasileiro ACM, Maxwell DP (1998) Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4:491–499

    Article  CAS  Google Scholar 

  • Arellano J, Fuentes SI, Castillo-España P, Hernández G (2009) Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell Tissue Organ Cult 96:11–18

    Article  CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe T (2001) Purine metabolism during white spruce somatic embryo development: Salvage of adenine, adenosine and inosine. Plant Sci 160:647–657

    Article  CAS  PubMed  Google Scholar 

  • Attree SM, Moore D, Sawhney VK, Fowke LC (1991) Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench)Voss) somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann Bot 68:519–525

    Google Scholar 

  • Bonfim K, Faria JC, Nogueira EOPL, Mendes EA, Aragao FJL (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    Article  CAS  PubMed  Google Scholar 

  • Christou P (1990) Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann Bot 66:379–386

    CAS  Google Scholar 

  • Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J (2001) An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo roper of loblolly pine. Plant Physiol 127:1556–1567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Close KR, Ludeman LA (1987) The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci 52:81–89

    Article  CAS  Google Scholar 

  • Collado R, Garcia LR, Angenon G, Torres D, Romero C, Bermúdez I, Veitía N (2011) Somatic embryos formation from immature cotyledons in Phaseolus vulgaris cv. CIAP 7247. Biotecnol Veg 11(4):235–240

    Google Scholar 

  • Collado R, Veitía N, Bermúdez-Caraballoso I, García LR, Torres D, Romero C, Rodríguez-Lorenzo JL, Angenon G (2013) Efficient in vitro plant regeneration via indirect organogenesis for different common bean cultivars. Sci Hortic 153:109–116

    Article  CAS  Google Scholar 

  • das Neves LO, Duque SRL, de Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv Jemalong. Plant Cell Rep 18:398–405

    Article  Google Scholar 

  • Delgado-Sánchez P, Saucedo-Ruiz M, Guzmán-Maldonado SH, Villordo-Pineda E, González-Chavira M, Fraire-Velázquez S, Acosta-Gallegos JA, Mora-Avilés A (2006) An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Sci 170:822–827

    Article  Google Scholar 

  • Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publisher, Dordrecht, pp 267–280

    Chapter  Google Scholar 

  • Durham RE, Parrot WA (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep 11:122–125

    Article  CAS  PubMed  Google Scholar 

  • El Dawayati MM, Abd El Bar OH, Zaid ZE, Zein El Din AFM (2012) In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palms cv. Gundila under dessication effect of polyethylene glycol treatments. Ann Agric Sci 57:117–128

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Finer JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult 15:125–136

    Article  CAS  Google Scholar 

  • Flinn et al (1991) Evaluation of somatic embryos on interior spruce. Characterization and developmental regulation of storage proteins. Physiol Plant 82:624–632

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization of the United Nations (FAO) (2014) FAOSTAT Agriculture Data.http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E

  • Fowke LC, Attree SM, Rennie PJ (1994) Scanning electron microscopy of hydrated and dessicated mature somatic embryos and zygotic embryos of white spruce (Picea glauca [Moench] Voss.). Plant Cell Rep 13:612–618

    Article  CAS  PubMed  Google Scholar 

  • Garcia LR, Pérez J, Kosky RG, Bermúdez-Caraballoso I, Veitía N, Collado R, Padrón Y, Torres D, Romero C, Reyes M (2010) Regeneración de plantas vía embriogénesis somática en Phaseolus acutifolius A. Gray. Biotecnol Veg 10:143–149

    Google Scholar 

  • Gatica-Arias AM, Muñoz-Valverde J, Ramírez-Fonseca P, Valdez-Melara M (2010) In vitro plant regeneration system for common bean (Phaseolus vulgaris): effect of N6-benzylaminopurine and adenine sulphate. Electron J Biotechnol 13 a06. http://www.scielo.cl/pdf/ejb/v13n1/a06.pdf. Accessed 17 April 2014

  • Geerts P, Mergeai G, Baudoin JP (1999) Rescue of early-shaped embryos and plant regeneration of Phaseolus polyanthus Greenm. and Phaseolus vulgaris L. Biotechnol Agron Soc Environ 3:141–148

    Google Scholar 

  • Genga A, Allavena A (1991) Factor affecting morphogenesis from immature cotyledon of Phaseolus coccineus L. Plant Cell Tissue Organ Cult 27:189–196

    Article  CAS  Google Scholar 

  • Griga M (2002) Morphology and anatomy of Pisum sativum somatic embryos. Biol Plant 45:173–182

    Article  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Phan-Tran LS (2012) Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81

    Google Scholar 

  • Hoyos RA (1990) Somatic embryogenesis in common bean (Phaseolus vulgaris L.): influence of media and environmental factors on globular and mature embryoid formation. Departament of crop and soil science. Michigan State University. 79

  • Ikeda M, Kamada H (2005) Comparison of molecular mechanisms of somatic and zygotic embryogenesis. In: Mujib A, Kamada H (eds) Somatic Embryogenesis. Plant Cell Monog vol 2. Springer-Verlag, Berlin, p 51–68

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar S, Bhaskar R, Bondada R, Li Z, Gray D (2003) Comparative anatomy and morphology of Vitis vinifera (Vitaceae) somatic embryos from solid-and liquid-culture-derived proembryogenic masses. Am J Bot 90(7):973–979

    Article  CAS  PubMed  Google Scholar 

  • Jeon J et al (2010) A subset of cytokinins two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    Article  CAS  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  • Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophillus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  • Kärkönen A (2000) Anatomical study of zygotic and somatic embryos of Tilia cordata. Plant Cell Tissue Organ Cult 61:205–214

    Article  Google Scholar 

  • Kim JW, Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci 117:131–138

    Article  CAS  Google Scholar 

  • Klimaszeuska K, Devantier Y, Lachance DA, Lelu MA, Charest PJ (1997) Larix laricina (tamarack): Somatic embryogenesis and genetic transformation. Can J For Res 27(4):538–550

    Google Scholar 

  • Krastanova S, Perrin M, Barbier P, Demangeat G, Cornuet P, Bardonnet N, Otten L, Pinck L, Walter B (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep 13:357–360

    Google Scholar 

  • Kwapata K, Sabzikar R, Stcklen MB, Kelly JD (2010) In vitro regeneration and morphogenesis studies in common bean. Plant Cell Tissue Organ Cult 100:97–105

    Article  CAS  Google Scholar 

  • Kwapata K, Nguyen T, Sticklen M (2012) Genetic transformation of common bean (Phaseolus vulgaris L.) with the Gus color marker, the bar herbicide resistance, and the Barley (Hordeum vulgare) HVA1 drought tolerance genes. Int J Agron. doi:10.1155/2012/198960

    Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Lou H, Kako S (1995) Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Sci Hortic 64:11–20

    Article  CAS  Google Scholar 

  • Lupotto E (1983) Propagation of an embryogenic culture of Medicago sativa L. Pflanzenphysiologie 111:95–104

    Article  CAS  Google Scholar 

  • Maheswaran G, Williams EG (1985) Origin and development of somatic mebryos of Trifolium repens in vitro. Ann Bot 56(5):619–630

    Google Scholar 

  • Malik KA, Saxena PK (1992) Somatic embryogenesis and shoot regeneration from intact seedlings of Phaseolus acutifolius A., P. aureus (L.) Wilczek, P. coccineus., and P. wrightii L. Plant Cell Rep 11(3):163–168

  • Martins IS, Sondahl MR (1984) Early stages of somatic embryo differentiation from callus cells of bean (Phaseolus vulgaris L.) grown in liquid medium. J Plant Physiol 117:97–103

    Article  CAS  PubMed  Google Scholar 

  • Müller B, Sheen J (2007) Arabidopsis cytokinin signaling pathway. Science 407:68–69

    Article  Google Scholar 

  • Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097

    Article  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, KrishnaRaj S, Saxena PK (1997) Thidiazuron-induced morphogenesis of Regal geranium (Pelargonium domesticum): a potential stress response. Physiol Plant 101:183–191

    Article  CAS  Google Scholar 

  • Nafie EM, Taha HS, Mansur RM (2013) Impact of 24-epibrassinolide on callogenesis and regeneration via somatic embryogenesis in Phaseolus vulgaris L. cv Brunca. World Appl Sci J 24:188–200

    Google Scholar 

  • Nguema Ndoutoumou P, Toussaint A, Baudoin P (2007) Embryo abortion and histological features in the interspecific cross between Phaseolus vulgaris L. and P. coccineus L. Plant Cell Tiss Org 88:329–332

    Article  Google Scholar 

  • Parrot WA, Bailey MA (1993) Characterization of recurrent somatic embryogenesis of alfalfa on auxin-free medium. Plant Cell Tissue Organ Cult 32:69–76

    Article  Google Scholar 

  • Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos R, Loyola-Vargas V (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Raghavan V (1976) Adventive embryogenesis: Induction of diploid embryoids. In: Sutchliffe JF (ed) Experimental embryogenesis in vascular plants. Academic, London, pp 349–381

    Google Scholar 

  • Rech EL, Vianna GR, Aragao FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3(3):410–418

    Article  CAS  PubMed  Google Scholar 

  • Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68(5):1086–1090

    Article  Google Scholar 

  • Russell DR, Wallace KM, Bathe JH, Martinell BJ, McCabe DE (1993) Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep 12:165–169

    Article  CAS  PubMed  Google Scholar 

  • Santos KGB, Mariath JEA, Moco MCC, Bodanese-Zanettini MH (2006) Somatic embryogenesis from immature cotyledons of soybean (Glycine max (L.) Merr). Ontogeny of somatic embryos. Braz Arch Biol Technol 49(1):49–55

    Google Scholar 

  • Saunders JW, Hosfield GL, Levi A (1987) Morphogenetic effects of 2,4-dichlorophenoxyacetic acid on pinto bean (Phaseolus vulgaris L.) leaf explants in vitro. Plant Cell Rep 6:46–49

    Article  CAS  PubMed  Google Scholar 

  • Schneider H (1981) Plant anatomy and general botany. In: Clark G (ed) The staining procedures, 4th edn. Williams & Wilkins, Baltimore/London, pp 315–333

    Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Sushama PR (2005) In vitro somatic embryogenesis from seedling explants of bean (Phaseolus vulgaris L.). Plant Cell Biotechnol Mol Biol 6(1–2):47–52

    Google Scholar 

  • Tran LSP et al (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urao T et al (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veltcheva M, Svetleva DL (2005) In vitro regeneration of Phaseolus vulgaris L. via organogenesis from petiole explants. J Cent Eur Agric 6(1):53–58

    Google Scholar 

  • Veltcheva M, Svetleva DL, Petkova SP, Perl A (2005) In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.)-Problems and progress. Sci Hortic 107:2–10

    Article  CAS  Google Scholar 

  • Victor JMR, Murthy BNS, Murch SJ, Murch S, KrishnaRaj S, Saxena PK (1999) Role of endogenous purine metabolism in thidiazuron induced somatic embryogenesis of peanut (Arachis hypogea L.). Plant Growth Regul 28:41–47

    Article  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    Article  CAS  PubMed  Google Scholar 

  • Xiang YZ, Ying HS, Zhi JC, Xian SZ (2008) Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol 50:816–824

    Article  Google Scholar 

  • Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z, Zhou K (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCR124. J Integr Plant Biol 55:631–642

    Article  CAS  PubMed  Google Scholar 

  • Yeung EC, Brown DCW (1982) The osmotic environment of developing embryos of Phaseolus vulgaris. Int J Plant Physiol 106(2):149–156

    Google Scholar 

  • Yeung EC, Meinke DW (1993) Embryogenesis in: Development of the suspensor. Plant Cell 5:1371–1381

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by SAGARPA (Grant 2003-199). We are grateful with Dr. Luis Herrera-Estrella for the financial and academical support in this project. We thank LAPEM-CFE-Irapuato (Laboratorio de pruebas de equipos y materiales) for the facilities of the electron microscope scanning specially to Ing. Fernando Bravo-Barrera and Ing. Diego Grana-Zamora for the technical assistance with the microscope. To Dr. Aaron Barraza-Casas, Dr. Raúl Alvarez-Venegas, Dra. Rosa Maria Rangel-Cano, Dr. Fernando Santacruz-Ruvalcaba, and MC Yesenia Ithaí Angeles López for the critical review and comments of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Cabrera-Ponce.

Additional information

Handling Editor: Néstor Carrillo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Ponce, J.L., López, L., León-Ramírez, C.G. et al. Stress induced acquisition of somatic embryogenesis in common bean Phaseolus vulgaris L.. Protoplasma 252, 559–570 (2015). https://doi.org/10.1007/s00709-014-0702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0702-4

Keywords

Navigation