Skip to main content

Molecular Biology of Somatic Embryogenesis

  • Chapter
In Vitro Embryogenesis in Plants

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 20))

Abstract

Similar to other higher eukaryotic organisms, in flowering plants, embryo development is the consequence of fertilization events. Union of gametes as the male sperm nucleus and the female egg results in the zygote which later develops into an embryo within the ovule. During the sexual reproductive cycle, the egg cell is prepared for initiation of the embryogenic development that is triggered by signals after sperm-egg contact. In vivo the gametophytic and sporophytic cell differentiation is separated and the haploid gametes are specialized for sexual fusion and the fertilized egg has the potential to develop into a new organism. In most higher eukaryotes, the differentiation of totipotent embryogenic cells is controlled by a pre-set developmental program and terminally differentiated cells are formed. In early embryos, the cells have rapid division cycles and the chromatin becomes transcriptionally active after variable number of division cycles during embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sung, Z.R., and Okimoto, R., Embryonic proteins in somatic embryos of carrot, Proc. Natl. Acad. Sci. USA, 78, 3683, 1981.

    PubMed  CAS  Google Scholar 

  2. Sung, Z.R., and Okimoto, R., Coordinate gene expression during somatic embryogenesis in carrots, Proc. Natl. Acad. Sci. USA, 80, 2661, 1983.

    PubMed  CAS  Google Scholar 

  3. Terzi, M., Pitto, L., and Sung, Z.R., Eds., Proc. Workshop on Somatic Embryo Genesis Carrots, San Miniato, IPRA, 1985.

    Google Scholar 

  4. Borkird, C., Choi, J.H., Jin, Z.H., Franz, G., Hatzopoulos, P., Chorneau, R., Bonas, U., Pelegri, F., and Sung, Z.R., Developmental regulation of embryogenic genes in plants, Proc. Natl. Acad. Sci. USA, 85, 6399, 1988.

    PubMed  CAS  Google Scholar 

  5. Komamine, A., Matsumoto, M., Tsukuhara, M., Fujiwara, A. Kawahara, R., Ito, M., Smith, J., Nomura, K., and Fujimura, T., Mechanisms of somatic embryogenesis in cell cultures-physiology, biochemistry and molecular biology, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 307.

    Google Scholar 

  6. Racusen, R.H., and Schiavone, F.M., Positional cues and differential gene expression in somatic embryos of higher plants, Cell Differ. Develop., 30, 159, 1990.

    CAS  Google Scholar 

  7. Dudits, D., Bögre, L., and Györgyey, J., Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro, J. Cell Science, 99, 475, 1991.

    Google Scholar 

  8. Abdullah, R., Cocking, E.C., and Thompson, J.A., Efficient plant regeneration from rice protoplasts through somatic embryogenesis, Bio/Technol., 4, 1087, 1986.

    Google Scholar 

  9. Vasil, V., Redway, F., and Vasil, I.K., Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum Aestivum L.), Bio/Technol., 8, 429, 1990.

    Google Scholar 

  10. Mórocz, S., Donn, G., and Dudits, D., An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture, Theor. Appl. Genet., 80, 721, 1990.

    Google Scholar 

  11. Smith, H., Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity, Plant Cell Environ., 13, 585, 1990.

    CAS  Google Scholar 

  12. Brummell, D.A., and Hall, J.I., Rapid cellular responses to auxin and the regulation of growth, Plant Cell Environ., 10, 523, 1987.

    CAS  Google Scholar 

  13. Davies, E., Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses, Plant Cell Environ., 10, 623, 1987.

    Google Scholar 

  14. Kao, K.N., and Michayluk, M.R., Plant regeneration from mesophyll protoplasts of alfalfa, Z. Pflanzenphysiol, 96, 135, 1980.

    Google Scholar 

  15. Song, J., Sorensen, E.L., and Liang, G.H., Direct embryogenesis from single mesophyll protoplasts in alfalfa (Medicago sativa. L), Plant Cell Rep., 9, 21, 1990.

    Google Scholar 

  16. Dijak, M., Smith, D.L., Wilson, T.J., and Brown, D.C.W., Stimulation of direct embryogenesis from mesophyll protoplasts of Medicago sativa, Plant Cell Rep., 5, 468, 1986.

    Google Scholar 

  17. Ryan, C.A., Oligosaccharide signaling in plants, Annu. Rev. Cell Biol.,3, 295, 1987.

    PubMed  CAS  Google Scholar 

  18. Shirras, A.D., and Northcote, D.H., Molecular cloning and characterization of cDNAs complementary to mRNAs from wounded potato (Solanum tuberosum) tuber tissue, Planta, 162, 353, 1984.

    CAS  Google Scholar 

  19. Graham, J.S., Hall, G., Pearce, G., and Ryan, C.A., Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants, Planta, 169, 399, 1986.

    CAS  Google Scholar 

  20. Corbin, D.R., Sauer, N., and Lamb, C.J., Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants, Mol. Cell. Biol., 7, 4337, 1987.

    PubMed  CAS  Google Scholar 

  21. Logemann, J. Mayer, J.E., Schell, J., and Willmitzer, L., Differential expression of genes in potato tubers after wounding, Proc. Natl. Acad. Sci. USA, 85, 1136, 1988.

    PubMed  CAS  Google Scholar 

  22. Hedrick, S.A., Bell, J.N., Boller, T., and Lamb, C.J., Chitinase cDNA cloning and mRNA induction by fungal elicitor, wounding, and infection, Plant Physiol., 86, 182, 1988.

    PubMed  CAS  Google Scholar 

  23. Stanford, A., Bevan, M., and Northcote, D., Differential expression within a family of novel wound-induced genes in potato, Mol. Gen. Genet., 215, 200, 1989.

    PubMed  CAS  Google Scholar 

  24. Yu, Y.B., and Yang, S.F., Auxin-induced ethylene production and its inhibition by aminoethoxylglycine and cobalt ion, Plant Physiol., 64, 1074, 1979.

    PubMed  CAS  Google Scholar 

  25. Roustan, J.P., Latche, A., and Fallot, J., Stimulation of Daucus carota somatic embryogenesis by inhibitors of ethylene synthesis: cobalt and nickel, Plant Cell Rep., 8, 182, 1989.

    CAS  Google Scholar 

  26. Roustan, J.P., Latche, A., and Fallot, J., Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arganine decarboxylase activity, Plant Sci., 67, 89, 1990.

    CAS  Google Scholar 

  27. Purnhauser, L., Medgyesy, P., Czakó, M., Dix, P.J., and Márton, L., Stimulation of shoot regeneration in Triticum aestivum and Nicotiana plumbaginifolia viv. tissue cultures using the ethylene inhibitor AgNO3, Plant Cell Rep., 6, 1, 1987.

    CAS  Google Scholar 

  28. Galiba, G., and Yamada, Y., A novel method for increasing the frequency of somatic embryogenesis in wheat tissue culture by NaCI and KC1 supplementation, Plant Cell Rep.,7,55, 1988.

    CAS  Google Scholar 

  29. Nomura, K., and Komamine, A., Embryogenesis from microinjected single cells in a carrot cell suspension culture, Plant Sci., 44, 53, 1986.

    Google Scholar 

  30. Binh, D.Q., and Heszky, L.E., Restoration of the regeneration potential of long-term cell culture in rice (Orysa sativa L.) by salt pretreatment, J. Plant Physiol., 136, 336, 1990.

    Google Scholar 

  31. Pitto, L., LoSchiavo, G., Giuliano, G., and Terzi, M., Analysis of the heat-shock protein pattern during somatic embryogenesis of carrot, Plant Mol. Biol., 2, 231, 1988.

    Google Scholar 

  32. Zimmerman, J.L., Apuya, N., Darwish, K., and O’Carroll, C., Novel regulation of heat shock genes during carrot somatic embryo development, Plant Cell, 1, 1137, 1989.

    PubMed  CAS  Google Scholar 

  33. Terzi, M., and Lo Schiavo, F., Developmental mutants in carrot, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 391.

    Google Scholar 

  34. Czarnecka, E., Edelman, L., Schoffl, F., and Key, J.L., Comparative analysis of physical stress responses in soybean seedlings using cloned heat shock cDNAs, Plant Mol. Biol.,3, 45, 1984.

    CAS  Google Scholar 

  35. McClure, B.A., Hagen, G., Brown, C.S., Gee, M.A., and Guilfoyle, T.J., Transcription, organization sequence of an auxin-regulated gene cluster in soybean, Plant Cell, 1, 229, 1989.

    Google Scholar 

  36. Bond, U., and Schlesinger, M.J., Heat-shock proteins and development, Adv. Genet., 24, 1, 1987.

    PubMed  CAS  Google Scholar 

  37. Zimmerman, J.L., Petri, W., and Meselson, M., Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock, Cell, 32, 1161, 1983.

    PubMed  CAS  Google Scholar 

  38. Bensaude, O., and Morange, M., Spontaneous high expression of heat shock proteins in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo, EMBO J., 2, 173, 1983.

    PubMed  CAS  Google Scholar 

  39. Györgyey, J., Gartner, A., Németh, K., Magyar, Z., Hirt, H., Heberle-bors, E., and Dudits, D., Alfalfa heat-shock genes are differentially expressed during somatic embryogenesis, Plant Mol. Biol., 16, 999, 1991.

    PubMed  Google Scholar 

  40. Ellis, R.J., Molecular chaperones: the plant connection, Science, 250, 954, 1990.

    PubMed  CAS  Google Scholar 

  41. Ingolia, T.D., and Craig, E.A., Drosophila gene related to the major heat-shock-induced gene is transcripted at normal temperatures and not induced by heat shock, Proc. Nad. Acad. Sci. USA, 79, 525, 1982.

    CAS  Google Scholar 

  42. Nuti-Ronchi, N., Bennici, A., and Martini, G., Nuclear fragmentation in dedifferentiating cells of Nicotiana glauca pith tissue grown in vitro,Cell Differentiation, 2, 77, 1973.

    CAS  Google Scholar 

  43. Parenti, R., Guille, E., Grisvard, J., Durante, M., Giorgi, L., and Buiatti, M., Transient DNA satellite in dedifferentiating pith tissue, Nature New Biol., 246, 237, 1973.

    PubMed  CAS  Google Scholar 

  44. Hase, Y., Yakura, K., and Tanifuji, J., Differential replication of satellite and main band DNA during early stages of callus formations in carrot root tissue, Plant Cell Physiol., 20, 1461, 1979.

    CAS  Google Scholar 

  45. Durante, M., Geri, C., Grisvard, J. Guille, E., Parenti, R., and Buiatti, M., Variation in DNA complexity in Nicotiana galuca tissue cultures, Protoplasma, 114, 114, 1983.

    CAS  Google Scholar 

  46. Natali, L., Cavallini, A., Cremonini, R. Bassi, P, and Cionini, P.G., Amplification of nuclear DNA sequences during induced plant cell dedifferentiation, Cell Differentiation, 18, 157, 1986.

    PubMed  CAS  Google Scholar 

  47. Escandon, A.S., Hopp, H.E., and Hahne, G., Differential amplification of five selected genes in callus cultures of two shrubby Oxalis species, Plant Sci., 63, 177, 1989.

    CAS  Google Scholar 

  48. Nuti-Ronchi, V.N., Giorgetti, L., and Tonelli, M.G., The commitment to embryogenesis, a cytological approach, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 437.

    Google Scholar 

  49. Bassi, P., Cionini, P.G., Cremonini, R., and Seghizzi, P., Underrepresentation of nuclear DNA sequences in differentiating root cells of Vicia faba,Protoplasma, 123, 70, 1984.

    CAS  Google Scholar 

  50. Murray, L., and Christianson, M., Phylogenetic comparison of large DNA contents of differentiated cells in the roots of Equisetum,Tradescantia and Hordeum, Amer. J. Bot., 74, 1779, 1987.

    Google Scholar 

  51. Altamura, M.M., Bassi, P., Cavallini, A., Cionini, G., Cremonini, R., Monacelli, B., Pasqua, G., Sassoli, O., Thanh Van, K.T., and Cionini, P.G., Nuclear DNA changes during plant development and the morphogenetic response in vitro of Nicotiana tabacum tissues, Plant Sci., 53, 73, 1987.

    Google Scholar 

  52. Jones, P.A., and Taylor, S.M., Cellular differentiation, cytidine analogues and DNA methylation, Cell, 29, 85, 1980.

    Google Scholar 

  53. Vanyushin, B.F., and Kirnos, M.D., DNA methylation in plants, Gene, 74, 117, 1988.

    PubMed  CAS  Google Scholar 

  54. Cedar, H., DNA methylation and gene activity, Cell, 53, 3, 1988.

    PubMed  CAS  Google Scholar 

  55. Klaas, M, and Amasino, R.M., DNA methylation is reduced in DNasel-sensitive regions of plant chromatin, Plant Physiol., 91, 451, 1989.

    PubMed  CAS  Google Scholar 

  56. Bashkite, E.A., Kirnos, M.D., Kiryanov, G.I., Aleksandrushkina, N.I., and Vanyushin, B.F., Replication and methylation of DNA in cells of tobacco suspension culture and the effect of auxin, Biokhimiya,45, 1448, 1980.

    CAS  Google Scholar 

  57. Kirnos, M.D., Artyukhovskaya, N.A., Aleksandrushkina, N.I., Ashapkin, V.V., and Vanyushin, B.F., Effect of phytohormones on replicative and postreplicative methylation of nuclear DNA in the S phase of the cell cycle of cells of the first leaf of etiolated wheat seedlings, Biokhimiya, 51, 1875, 1986.

    CAS  Google Scholar 

  58. Morrish, F., and Vasil, I.K., DNA methylation and embryogenic competence in leaves and callus of Napiergrass (Pennisetum purpureum schum.), Plant Physiol., 90, 37, 1989.

    PubMed  CAS  Google Scholar 

  59. LoSchiavo, F., Pitto, L., Giuliano, G., Torti, G., Nuti-Ronchi, V., Marazziti, D., Vergara, R., Orselli, S., and Terzi, M., DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs, Theor. Appl. Genet., 77, 325, 1989.

    Google Scholar 

  60. Nick, H., Bowen, B., Ferl, R.J., and Gilbert, W., Detection of cytosine methylation in the maize alcohol dehydrogenase gene by genomic sequencing, Nature, 319, 243, 1986.

    CAS  Google Scholar 

  61. Epel, D., The initiation of development at fertilization, Cell Differ. Develop., 29, 1, 1990.

    CAS  Google Scholar 

  62. Palme, K., Hesse, T., Moore, I., Campos, N., Feldwisch, J., Garbers, C., Hesse, F., and Schell, J., Hormonal modulation of plant growth: the role of auxin perception, Mechanisms Develop., 33, 97, 1991.

    CAS  Google Scholar 

  63. Dohrmann, U., Hertel, R., and Kowalik, H., Properties of auxin binding sites in different subcellular fractions from maize coleoptiles, Planta, 140, 97, 1978.

    CAS  Google Scholar 

  64. Löbler, M., and Klambt, D., Auxin-binding protein from coleoptile membranes of corn (Zea mays L.) I. Purification by immunological methods and characterization, J. Biol. Chem., 260, 9848, 1985.

    PubMed  Google Scholar 

  65. Shimomura, S., Sotobayashi, T., Futai, M., and Fukui, T., Purification and properties of an auxin-binding protein from maize shoot membranes, J. Biochem., 99, 1513, 1986.

    PubMed  CAS  Google Scholar 

  66. Napier, R.M., Venis, M.A., Bolton, M.A., Richardson, L.I., and Butcher, G.W., Preparation and characterisation of monoclonal and polyclonal antibodies to maize membrane auxin-binding protein, Planta, 176, 519, 1988.

    CAS  Google Scholar 

  67. Hesse, T., Feldwisch, J., Balshüsemann, D., Bauw, G., Puype, M., Vandekerckhove, J., Löbler, M., Klambt, D., Schell, J., and Palme, K., Molecular cloning and structural analysis of a gene from Zea mays (L.) coding for a putative receptor for the plant hormone auxin, EMBO J., 8, 2453, 1989.

    PubMed  CAS  Google Scholar 

  68. Venis, M.A., Auxin-binding proteins in maize: purification and receptor function. in Molecular Biology of Plant Growth Control, Fox, E.J., Jacobs, M., Eds., Alan R. Liss, New York, 1987, 219.

    Google Scholar 

  69. Klambt, D., A view about the function of auxin-binding proteins at plasma membranes, Plant Mol. Biol., 14, 1045, 1990.

    PubMed  CAS  Google Scholar 

  70. Napier, R.M., and Venis, A., Monoclonal antibodies detect an auxin-induced conformational change in the maize auxin-binding protein, Planta, 182, 313, 1990.

    CAS  Google Scholar 

  71. Barbier-Brygoo, H., Ephritikhine, G., Klambt, D., Ghislain, M., and Guern, J., Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts, Proc. Natl. Acad. Sci. USA, 86, 891, 1989.

    PubMed  CAS  Google Scholar 

  72. Inohara, N., Shimomura, S., Fukui, T., and Futai, M., Auxin-binding protein located in the endoplasmic reticulum of maize shoots: Molecular cloning and complete primary structure, Proc. Natl. Acad. Sci. USA, 86, 3564, 1989.

    PubMed  CAS  Google Scholar 

  73. Theologis, A., Rapid gene regulation by auxin, Ann. Rev. Plant Physiol.,37, 407, 1986.

    CAS  Google Scholar 

  74. Sanders, D., Hansen, U.P., and Slayman, C.L. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc. Natl. Acad. Sci. USA, 78, 5903, 1981

    PubMed  CAS  Google Scholar 

  75. Cleland, R.E., Prins, H.B.A., Harper, J.R., and Higinbotham, N., Rapid hormone-induced hyperpolarisation of the oat coleoptile transmembrane potential, Plant Physiol.,59, 395, 1977.

    PubMed  CAS  Google Scholar 

  76. Bates, G.W., and Goldsmith, M.H.M., Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids, Planta, 159, 231, 1983.

    CAS  Google Scholar 

  77. Bögre, L., Stefanov, I., Ábrahám, M., Somogyi, I., and Dudits, D., Differences in responses to 2,4-D-dichlorophenoxy acetic acid (2,4-D) treatment between embryogenic and nonembryogenic lines of alfalfa, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 427.

    Google Scholar 

  78. Shen, W.H., Petit, A., Guern, J., and Tempe, J., Hairy roots are more sensitive to auxin than normal roots, Proc. Natl. Acad. Sci. USA, 85, 3417, 1988.

    PubMed  CAS  Google Scholar 

  79. Berridge, M.J., Inositol trisphosphate and diacylglycerol: two interacting second messengers, Ann. Rev. Biochem., 56, 159, 1987.

    PubMed  CAS  Google Scholar 

  80. Turner, P.R., Sheetz, M.P., and Jaffe, L.A., Fertilization increases the polyphosphoinositide content of sea urchin eggs, Nature, 310, 414, 1984.

    PubMed  CAS  Google Scholar 

  81. Ciapa, B., and Whitaker, M., Two phases of inositol polyphosphate and diacylglycerol production at fertilisation, FEBS Lett.,195, 347, 1986.

    PubMed  CAS  Google Scholar 

  82. Swann, K., and Whitaker, M., The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs, J. Cell Biol., 103, 2333, 1986.

    PubMed  CAS  Google Scholar 

  83. Turner, P.R., Jaffe, L.A., and Fein, A., Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein, J. Cell Biol., 102, 70, 1986.

    PubMed  CAS  Google Scholar 

  84. Miyazaki, S., Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs, J. Cell Biol.,106, 345, 1988.

    PubMed  CAS  Google Scholar 

  85. Jaken, S., Protein kinase C and tumor promoters, Curr. Opinion Cell Biol., 2, 192, 1990.

    PubMed  CAS  Google Scholar 

  86. Poovaiah, B.W., Reddy, A.S.N., and McFadden, J.J., Calcium messenger system; role of protein phosphorylation and inositol bisphospholipids, Plant Physiol., 69, 569, 1987.

    CAS  Google Scholar 

  87. Morse, M.J., Satter, R.L., Crain, R.C., and Coté, G.G., Signal transduction and phosphatidylinositol turnover in plants, Physiol. Plant., 76, 118, 1989.

    CAS  Google Scholar 

  88. Guern, J. Ephritikhine, G., Imhoff, V., and Pradier, J.M., Signal transduction at the membrane level of plant cells, in Progress in Plant Cellular and Molecular Biology,Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 466.

    Google Scholar 

  89. Palme, K., Molecular analysis of plant signaling elements: the relevance of eucaryotic signal transduction models. Int. Rev. Cytol., 132, 223. 1992.

    PubMed  CAS  Google Scholar 

  90. Morré, D.J., Gripshover, B., Monroe, A., and Morré, J.T., Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4- Dichlorophenoxyacetic acid, J. Biol. Chem., 259, 15364, 1984.

    PubMed  Google Scholar 

  91. Ettlinger, C., and Lehle, L., Auxin induces rapid changes in phosphatidylinositol metabolites, Nature, 331, 176, 1988.

    PubMed  CAS  Google Scholar 

  92. Heim, S., and Wagner, K.G., Inositol phosphates in the growth cycle of suspension cultured plant cells, Plant Sci., 63, 159, 1989.

    CAS  Google Scholar 

  93. Schumaker, K.S., and Sze, H., Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots, J. Biol. Chem., 262, 3944, 1987.

    PubMed  CAS  Google Scholar 

  94. Ranjeva, R., Carrasco, A., and Boudet, A.M., Inositol trisphosphate stimulates the release of calcium from intact vacuoles isolated from Acer cells, FEBS Lett., 230, 137, 1988.

    CAS  Google Scholar 

  95. Drobak, B.K., and Ferguson, I.B., Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate, Biochem. Biophys. Res. Commun., 130, 1241, 1985.

    PubMed  CAS  Google Scholar 

  96. Hasunama, K., and Funadera, K., GTP-binding protein(s) in green plant, Lenina paucicostata, Biochem. Biophys. Res. Commun.,143, 908, 1987.

    Google Scholar 

  97. Drobak, B.K., Allan, E.F., Comerford, J.G., Roberts, K., and Dawson, A.P., Presence of guanine nucleotide-binding proteins in a plant flypocotyl microsomal fraction, Biochem. Biophys. Res. Commun., 150, 899, 1988.

    PubMed  CAS  Google Scholar 

  98. Blum, W., Hinsch, K.D., Schultz, G., and Weiler, E.W., Identification of GTP proteins in the plasma membrane of higher plants, Biochem. Biophys. Res. Commun., 156, 954, 1988.

    PubMed  CAS  Google Scholar 

  99. Matsui, M., Sasamoto, S., Kuneida, T., Nomura, N., and Ishizaki, R., Cloning of ara, a putative Arabidopsis thaliana gene homologous to the ras-related family, Gene, 76, 331, 1989.

    Google Scholar 

  100. Anuntalabhochai, S., Terryn, N., Van Montagu, M., and Inze, D., Molecular characterization of an Arabidopsis thaliana cDNA encoding a small GTP-binding protein, Rha- I, Plant J., 1, 167, 1991.

    PubMed  CAS  Google Scholar 

  101. Palme, K., Diefenthal, T., Vingron, M., Sander, C., and Schell, J., Molecular cloning and structural analysis of genes from Zea mays (L.) coding for members of the ras-related ypt gene family. Proc. Natl. Acad. Sci. USA, 89, 787, 1992.

    PubMed  CAS  Google Scholar 

  102. Dallmann, G., Sticher, L., Marshallsay, C., and Nagy, F., Molecular characterization of tobacco cDNAs encoding two small GTP-binding proteins, Plant Mol. Biol., 19, 847, 1992.

    PubMed  CAS  Google Scholar 

  103. Lehle, L., Phosphatidyl inositol metablosim and its role in signal transduction in growing plants, Plant Mol. Biol., 15, 647, 1990.

    PubMed  CAS  Google Scholar 

  104. Scherer, G.F.E., André, B., and Martiny-Baron, G., Hormone-activated phospholipase A2 and lysophospholipid-activated protein kinase: a new signal transduction chain and a new second messenger system in plant? Curr. Topics Plant Biochem. Physiol., 9, 190, 1990.

    CAS  Google Scholar 

  105. André, B., and Scherer, G.F.E., Stimulation by auxin of phospholipase A in membrane vesicles from an auxin-sensitive tissue is mediated by an auxin receptor, Planta, 185, 209, 1991.

    Google Scholar 

  106. Elliot, D.C., Calcium involvement in plant hormone action, in Molecular and Cellular Aspects of Calcium in Plant Development, Trewavas, A.J., Ed., Plenum Press, New York, 1986, 285.

    Google Scholar 

  107. Poovaiah, B.W., Molecular and cellular aspects of calcium action in plants, Hortsci., 23, 267, 1988.

    CAS  Google Scholar 

  108. Williamson, R.E., and Ashley, C.C., Free Ca2+ and cytoplasmic streaming in the alga Chara,Nature,296, 647, 1982.

    PubMed  CAS  Google Scholar 

  109. Roberts, D.M., Lukas, T.J., Harrington, H.M., and Watterson, D.M., Molecular mechanisms of calmodulin action, in Molecular and Cellular Aspects of Calcium in Plant Development, Trewavas, A.J., Ed., Plenum Press, New York, 1986, 11.

    Google Scholar 

  110. Poovaiah, B.W., and Veluthambi, K., The role of calcium and calmodulin in hormone action in plants: Importance of protein phosphorylation, in Molecular and Cellular Aspects of Calcium in Plant Development, Trewavas, A.J., Ed., Plenum Press, New York, 1986, 83.

    Google Scholar 

  111. Jaffe, L.F., The role of calcium explosions, waves and pulses in activating eggs, in Biology of Fertilization, Vol.3., Metz, C.B., and Monroy, A., Eds., Academic Press, New York, 1985, 127.

    Google Scholar 

  112. Miyazaki, S.I., Hashimoto, N., Yashimoto, Y., Kishimoto, T., Igusa, Y., and Hiramoto, Y., Temporal and spatial dynamics of the periodic increase in intracellular-free calcium at fertilization of golden hamster eggs, Dev. Biol., 118, 259, 1988.

    Google Scholar 

  113. Speksnijder, J.A., Corson, D.W., Sardet, C., and Jaffe, L.F., Free calcium pulses following fertilization in the ascidian egg, Dev. Biol., 135, 182, 1989.

    PubMed  CAS  Google Scholar 

  114. Jansen, M.A.K., Booij, H., Schel, J.H.N., and De Vries, S.C., Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures, Plant Cell Rep., 9, 221, 1990.

    CAS  Google Scholar 

  115. Nomura, K., Mechanisms of somatic embryogenesis in carrot suspension cultures, Ph.D. Thesis, University Tokyo, Japan, 1987.

    Google Scholar 

  116. Timmers, A.C.J., De Vries, S.C., and Schel, J.H.N., Distribution of membrane-bound calcium and activated calmodulin during somatic embryogenesis of carrot (Daucus carota L.), Protoplasma, 153, 24, 1989.

    Google Scholar 

  117. Epel, D., The role of Na+-H+ exchange and intracellular pH changes in fertilization, in Na + H + Exchange, Grinstein, S., Ed., CRC Press, Boca Raton, FL, 1988, 209.

    Google Scholar 

  118. Dube, F.T., Schmidt, C.H., Johnson, C.H., and Epel, D., The hierarchy of requirements for an elevated intracellular pH during early development of sea urchin embryos, Cell, 40, 657, 1985.

    PubMed  CAS  Google Scholar 

  119. Sanders, D., Hansen, U.P., and Slayman, C.L., Role of the plasma membrane proton pump in pH regulation in non-animal cells, Proc. Natl. Acad. Sci. USA, 78, 5903, 1981.

    PubMed  CAS  Google Scholar 

  120. Cleland, R.E., and Lomax, T., Hormonal control of H+-excretion from oat cells, in Regulation of Cell Membrane Activities in Plants, Marre, E., and Ciferri, O., Eds., North-Holland Publishing Co., Amsterdam, 1977, 161.

    Google Scholar 

  121. Felle, H., Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles, Planta, 174, 495, 1988.

    CAS  Google Scholar 

  122. Felle, H., Cytoplasmic free calcium in Riccia fluitans L. and Zea mays L.: interactions of Ca2+ and pH? Planta, 176, 248, 1988.

    CAS  Google Scholar 

  123. Schaefer, J., Regeneration in alfalfa tissue culture, Plant Physiol., 79, 584, 1985.

    PubMed  CAS  Google Scholar 

  124. Smith, D.L., and Krikorian, A.D., Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: evaluation of the effects of pH, ethylene and activated charcoal, Plant Cell Rep., 9, 34, 1990.

    PubMed  CAS  Google Scholar 

  125. Smith, D.L., and Krikorian A.D., pH control of carrot somatic embryogenesis, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 449.

    Google Scholar 

  126. Murray, A.W., and Kirschner, M.W., Cyclin synthesis drives the early embryonic cell cycle, Nature, 339, 275, 1989.

    PubMed  CAS  Google Scholar 

  127. Key, J.L., Hormones and nucleic acid metabolism, Ann. Rev. Plant Physiol., 20, 449, 1969.

    CAS  Google Scholar 

  128. Hagen, G., and Guilfoyle, T.J., Rapid induction of selective transcription by auxins, Mol. Cell. Biol., 5, 1197, 1985.

    PubMed  CAS  Google Scholar 

  129. Bakó, L., Bögre, L., and Dudits, D., Protein phosphorylation in partially synchronized cell suspension culture of alfalfa, in NATO Adv. Studies on Cellular Regulation by Protein Phosphorylation, Heilmayer, L., Ed., Springer-Verlag, Berlin, 1991, H56, 435.

    Google Scholar 

  130. Yeoman, M.M., Early development in callus cultures, Int. Rev. Cytol., 29, 383, 1970.

    CAS  Google Scholar 

  131. Yasuda, T., Yajima, Y., and Yamada, Y., Induction of DNA synthesis and callus formation from tuber tissue of Jerusalem artichoke by 2,4-dichlorophenoxyacetic acid, Plant Cell Physiol., 15, 321, 1974.

    CAS  Google Scholar 

  132. Yeoman, M.M., and Evans, P.K., Growth and differentiation in plant tissue cultures. II. Synchronous cell division in developing callus cultures, Ann. Bot., 31, 323, 1967.

    CAS  Google Scholar 

  133. Watanabe, A., and Imaseki, H., Induction of deoxyribonucleic acid synthesis in potato tuber tissue by cutting, Plant Physiol., 51, 772, 1973.

    PubMed  CAS  Google Scholar 

  134. Wernicke, W., Rös, M., and Jung, G., Microtubules and the first cell cycle in cultures mesophyll protoplasts of Nicotiana, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 538.

    Google Scholar 

  135. Matzk, F., A novel approach to differentiated embryos in the absence of endosperm, Sex. Plant. Reprod.,4, 88, 1991.

    Google Scholar 

  136. Britten, E.J., Natural and induced parthenocarpy in maize and its relation to hormone production by the developing seed, Amer. J. Bot., 37, 345, 1950.

    CAS  Google Scholar 

  137. Marshall, D.R., Molnar-Lang, M., and Ellison, F.W., Effects of 2,4-D on parthenocarpy and cross-compatibility in wheat, Cereal Res. Commun., 11, 213, 1983.

    Google Scholar 

  138. Raghavan, V., Experimental Embryogenesis in Angiosperms, Cambridge, Cambridge University Press, 1986.

    Google Scholar 

  139. Warren, G.S., and Fowler, M.W., Cell number and cell doubling times during the development of carrot embryoids in suspension culture, Experientia, 34, 356, 1978.

    Google Scholar 

  140. Fujimura, T., and Komamine, A., The serial observation of embryogenesis in a carrot cell suspension culture, New Phytol., 86, 213, 1980.

    Google Scholar 

  141. Nishi, A., Kato,. K., Takahashi, M., and Yoskida, R., Partial synchronization of carrot cell cultures by auxin deprivation, Physiol. Plant., 39, 9, 1977.

    CAS  Google Scholar 

  142. Wernicke, W., and Milkovits, L., Effect of auxin on the mitotic cell cycle in cultured leaf segments at different stages of developmen in wheat, Physiol. Plant., 69, 16, 1987.

    CAS  Google Scholar 

  143. Ahuja, P.S., Pental, D., and Cocking, E.C., Plant regeneration from leaf base callus and cell suspensions of Triticum aestivum, Z. Pflanzenzuchtg., 81, 139, 1982.

    Google Scholar 

  144. Conger, B.V., Novak, F.J., Afza, R., and Erdelsky, K., Somatic embryogenesis from cultured leaf segments of Zea mays, Plant Cell Rep., 6, 345, 1987.

    Google Scholar 

  145. Barcelo, P., Lazzeri, P.A., Martin, A., and Lörz, H., Competence of cereal leaf cells. I. Patterns of proliferation and regeneration capability in vitro of the inflorescence sheath leaves of barley, wheat and tritordeum, Plant Sci., 77, 243, 1991.

    CAS  Google Scholar 

  146. Meyer, Y., and Chartier, Y., Hormonal control of mitotic development in tobacco protoplasts, Plant Physiol., 68, 1273, 1981.

    PubMed  CAS  Google Scholar 

  147. Hunt, T., Under arrest in the cell cycle, Nature, 342, 483, 1989.

    PubMed  CAS  Google Scholar 

  148. Witters, L.A., Protein phosphorylation and dephosphorylation, Curr. Opinion Cell Biol., 2, 212, 1990.

    PubMed  CAS  Google Scholar 

  149. Draetta, G., Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation, Trends Biochem. Sci., 15, 378, 1990.

    CAS  Google Scholar 

  150. Solomon, M.J., Glotzer, M., Lee, T.H., Philippe, M., and Kirschner, M.W., Cyclin activation of p34cdc2 Cell 3 1013, 1990.

    Google Scholar 

  151. Johnston, L.H., and Lowndes, N.F., Cell cycle control of DNA synthesis in budding yeast. Nucl. Acids Res.,20, 2403, 1992.

    PubMed  CAS  Google Scholar 

  152. Jacobs, T., Control of the cell cycle, Develop. Biol.,153, 1, 1992.

    PubMed  CAS  Google Scholar 

  153. Broek, D., Bartlett, R., Crawford, K., and Nurse, P., Involvement of p34cdc2 in establishing the dependency of S phase on mitosis, Nature, 349, 388, 1991.

    PubMed  CAS  Google Scholar 

  154. Moreno, S., and Nurse, P., Substrates for p34cdc2 in vivo veritas? Cell, 61, 549, 1990.

    PubMed  CAS  Google Scholar 

  155. Lamb, N.J.C., Fernandez, A., Watrin, A., Labbé, J.C., and Cavadore, J.C., Microinjection of p34cdc2 kinase induces marked changes in cell shape, cytoskeletal organization and chromatin structure in mammalian fibroblasts, Cell, 60, 151, 1990.

    PubMed  CAS  Google Scholar 

  156. Verde, F., Labbé, J.C., Dorée, M., and Karsenti, E., Regulation of microtubule dynamic by cdc2 protein kinase in cell-free extracts of Xenopus eggs, Nature, 343, 233, 1990.

    PubMed  CAS  Google Scholar 

  157. Cisek, L.J., and Corden, J.L., Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2, Nature, 339, 679, 1989.

    PubMed  CAS  Google Scholar 

  158. Minshull, J., Pines, J., Golsteyn, R., Standart, N., Mackie, S., Colman, A., Blow, J., Ruderman, J.V., Wu, M., and Hunt, T., The role of cyclin synthesis, modification and destruction in the control of cell division, J. Cell. Sci. Suppl., 12, 77, 1989.

    PubMed  CAS  Google Scholar 

  159. Reed, S.I., G1-specific cyclins: in search of an S-phase-promoting factor, Trends Genet., 7, 95, 1991.

    PubMed  CAS  Google Scholar 

  160. Dudits, D., Bögre, L., Bakó., L., Dedeoglu, D., Magyar, Z., Kapros, T., Felföldi, F., and Györgyey, J. Key components of cell cycle control during auxin-induced cell division, in Molecular and Cell Biology of the Plant Cell Cycle, Ormrod, J.C., and Francis, D., Eds., Kluwer Academic Publishers, Dordrecht, 1993, 111.

    Google Scholar 

  161. Lee, M.G., and Nurse, P., Complementation used to clone a homologue of the fission yeast cell cycle control gene cdc2, Nature, 327, 1, 1987.

    Google Scholar 

  162. John, P.C.L., Sek, F.J., and Lee, M.G., A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas,and a similar protein is detectable in higher plants and remote taxa, Plant Cell, 1, 1185, 1989.

    PubMed  CAS  Google Scholar 

  163. Feiler, H.S., and Jacobs, T.W., Cell division in higher plants: a cdc2 gene its 34-kDa product, and histone H1 kinase activity in pea, Proc. Natl. Acad. Sci. USA, 87, 5397, 1990.

    PubMed  CAS  Google Scholar 

  164. Hirt, H., Páy, A., Györgyey, J., Bakó, L., Németh, K., Bögre, L., Schweyen, R.J., HeberleBors, E., and Dudits, D., Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2, Proc. Natl. Acad. Sci. USA, 88, 1636, 1991.

    PubMed  CAS  Google Scholar 

  165. Colasanti, J., Tyers, M., and Sundaresan, V., Isolation and characterization of cDNA clones encoding a functional p34ccdc2 homologue from Zea mays, Proc. Natl. Acad. Sci. USA,88, 3377, 1991.

    PubMed  CAS  Google Scholar 

  166. Magyar, Z., Bakó, L., Bögre, L., Dedeoglu, D., Kapros, T., and Dudits, D., Active cdc2 genes and cell cycle phase specific cdc2-related kinase complexes in hormone stimulated alfalfa cells, The Plant J. 4, 151, 1993.

    CAS  Google Scholar 

  167. Brizuela, L., Draetta, G., and Beach, D., p13sucl acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase, EMBO J., 6, 3507, 1987.

    PubMed  CAS  Google Scholar 

  168. Labbé, J.C., Capony, J.P., Caput, D.,Cavadore, J.C., Derancourt, J., Kaghad, M., Lelias, J.M., Picard, A., and Doree, M., MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B, EMBO J., 8, 3053, 1989.

    PubMed  Google Scholar 

  169. Furukawa, Y., Piwnica-Worms, H., Ernst, T.J., Kanakura, Y., and Griffin, J.D., cdc2 gene expression at the G1 to S transition in human T lymphocytes, Science, 250, 805, 1990.

    PubMed  CAS  Google Scholar 

  170. Hata, S., cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice, FEBS Lett., 279, 149, 1991.

    PubMed  CAS  Google Scholar 

  171. Hirayama, T., Imajuku, Y., Anai, T., Matsui, M., and Oka, A., Identification of two cellcycle-controlling cdc2 gene homologs in Arabidopsis thaliana,Gene,105, 159, 1991.

    PubMed  CAS  Google Scholar 

  172. Ferreira, P.C.G., Hemerly, A.S., Villaroel, R., Montagu, M.C., and Inze, D. The Arabidopsis functional homolog of the p34cdc2 protein kinase, Plant Cell,3, 531, 1991.

    PubMed  CAS  Google Scholar 

  173. Ranjeva, R., and Boudet, A.M., Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling, Ann. Rev. Plant Physiol., 38, 73, 1987.

    CAS  Google Scholar 

  174. Blowers, D.P., Boss, W.F., and Trewavas, A.J., Rapid changes in plasma membrane protein phosphorylation during initiation of cell wall digestion, Plant Physiol., 86, 505, 1988.

    PubMed  CAS  Google Scholar 

  175. Bennett, J., Steinback, K.E., and Arntzen, C.J., Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides, Proc. Natl. Acad. Sci. USA, 77, 5253, 1980.

    PubMed  CAS  Google Scholar 

  176. Veluthambi, K., and Poovaiah, B.W., Calcium-promoted protein phosphorylation in plants, Science, 223, 167, 1984.

    PubMed  CAS  Google Scholar 

  177. Bögre, L., Oláh, Z., and Dudits, D., Ca2+-dependent protein kinase from alfalfa (Medicago varia): partial purification and autophosphorylation, Plant Sci., 58, 135, 1988.

    Google Scholar 

  178. Davis, J.R., and Polya, G.M., Purification and properties of a high specific activity protein kinase from a wheat germ, Plant Physiol., 71, 489, 1983.

    Google Scholar 

  179. Murray, M.G., and Key, J.L., 2,4-dichlorophenoxyacetic acid-enhanced phosphorylation of soybean nuclear proteins, Plant Physiol., 61, 190, 1978.

    PubMed  CAS  Google Scholar 

  180. Harmon, A.C., Putnam-Evans, C., and Cormier, M.J., A calcium dependent but calmodulinindependent protein kinase from soyabean, Plant Physiol., 83, 830, 1987.

    PubMed  CAS  Google Scholar 

  181. Oláh, Z., Bögre, L., Lehel, Cs., Faragó, A., Seprödi, J., and Dudits, D., The phosphorylation site of Ca2+-dependent protein kinase from alfalfa, Plant Mol. Biol. 12, 453, 1989.

    Google Scholar 

  182. Romhányi, T., Seprödi, J., Antoni, F., Mészáros, Gy., Buday, L., and Faragó, A., The assay of the activity of protein kinase C with the synthetic oligopeptide substrate designed for histone kinase II, Biochim. Biophys. Acta 888, 325, 1986.

    PubMed  Google Scholar 

  183. Putnam-Evans, C., Harmon, A.C., and Cormier, M.J., Purification and characterization of a novel calcium-dependent protein kinase from soybean, Biochemistry 29, 2488, 1990.

    PubMed  CAS  Google Scholar 

  184. Goday, A., Sanchez-Martinez, D., Gomez, J., Puigdomenech, P., and Pages, M., Gene expression in developing Zea mays embryos: regulation by abscisic acid of a highly phosphorylated 23- to 25-kD group of proteins, Plant Physiol. 88, 564, 1988.

    PubMed  CAS  Google Scholar 

  185. Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Tome, J.M., and Pages, M., Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize, Plant MoL Biol. 14, 423, 1990.

    PubMed  CAS  Google Scholar 

  186. Guilfoyle, T.J., A protein kinase from wheat germ that phosphorylates the largest subunit of RNA polymerase II, Plant Cell 1, 827, 1989.

    PubMed  CAS  Google Scholar 

  187. Datta, N., and Cashmore, A.R., Binding of a pea nuclear protein to promoters of certain photoregulated genes is modulated by phosphorylation, Plant Cell 1, 1069, 1989.

    PubMed  CAS  Google Scholar 

  188. Old, R.W., and Woodland, H.R., Histone genes: not so simple after all, Cell 38, 624, 1984.

    PubMed  CAS  Google Scholar 

  189. Schümperli, D., Multilevel regulation of replication-dependent histone genes, Trends Genet. 4, 187, 1988.

    PubMed  Google Scholar 

  190. Gigot, C., Histone genes in higher plants, in Architecture of Eukaryotic Genes Kahl, G., Ed., VCH Verlagsgesellschaft, Weinheim, 1988, 229.

    Google Scholar 

  191. Kato, A., Fukuei, K., and Tanifuji, S., Histone synthesis during early stages of germination in Vicia faba embryonic axes, Plant Cell Physiol. 23, 967, 1982.

    CAS  Google Scholar 

  192. Raghavan, V., and Olmedilla, A., Spatial patterns of histone mRNA expression during grain development and germination in rice, Cell Differ. Develop. 27, 183, 1989.

    CAS  Google Scholar 

  193. Maxson, R., Cohn, R., and Kedes, L., Expression and organization of histone genes, Ann. Rev. Genet. 17, 239, 1983.

    PubMed  CAS  Google Scholar 

  194. Waterborg, J.H., Wicinov, I., and Harrington, R.E., Histone variants and acetylated species from the alfalfa plant Medicago Sativa, Arch. Biochem. Biophys. 256, 167, 1987.

    CAS  Google Scholar 

  195. Wu, S.C., Györgyey, J., and Dudits, D., Polyadenylated H3 histone transcripts and H3 histone variants in alfalfa, Nucl. Acids Res. 17, 3057, 1989.

    PubMed  CAS  Google Scholar 

  196. Kapros, T., Bogre, L., Németh, K., Bakó, L., Györgyey, J., Wu, S.C., and Dudits, D., Differential expression of histone H3 gene variants during cell cycle and somatic embryogenesis in alfalfa, Plant Physiol. 98, 621, 1992.

    PubMed  CAS  Google Scholar 

  197. Kapros, T., Stefanov, I., Magyar, Z., Ocsovszky, I., and Dudits, D., A short histone H3 promoter from alfalfa specifies expression in S-phase cells and meristems, In Vitro Cell. Dev. Biol. 29P, 27, 1993.

    CAS  Google Scholar 

  198. Waterborg, J.H., Harrington, R.E., and Wicinov, I., Differential histone acetylation in alfalfa (Medicago Sativa) due to growth in NaC1, Plant Physiol. 90, 237, 1989.

    PubMed  CAS  Google Scholar 

  199. Takahashi, Y., Kuroda, H., Tanaka, T., Machida, Y., Takebe, I., and Nagata, T., Isolation of an auxin-regulated gene cDNA expressed during the transition from Go to S phase in tobacco mesphyll protoplasts, Proc. Natl. Acad. Sci. USA 86, 9279, 1989.

    PubMed  CAS  Google Scholar 

  200. Ainley, W.M., Walker, J.C., Nagao, R.T., and Key, J.L., Sequence and characterization of two auxin-regulated genes from soybean, J. Biol. Chem. 263, 10658, 1988.

    PubMed  CAS  Google Scholar 

  201. Hong, J.C., Nagao, R.T., and Key, J.L., Developmentally regulated expression of soybean proline-rich cell wall protein gene, Plant Cell 1, 937, 1989.

    PubMed  CAS  Google Scholar 

  202. Klee, H.J., and Rogers, S.G., Plant gene vectors and genetic transformation: plant transformation systems based on the use of Agrobacterium tumefaciens, in Cell Culture and Somatic Cell Genetics of Plants Vol. 6, Vasil, I.K., Ed., Academic Press, Inc., New York, 1989, 1.

    Google Scholar 

  203. Paszkowski, J., Saul, M.W., and Potryykus, M.W., Plant gene vectors and genetic transformation: DNA mediated direct gene transfer to plants, in Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Vasil, I.K., Ed., Academic Press, Inc., New York, 1989, 51.

    Google Scholar 

  204. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W., GUS fusions: 0-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, EMBO J. 6, 3901, 1987.

    PubMed  CAS  Google Scholar 

  205. Koncz, C., Olsson, O., Langridge, W.H.R., Schell, J., and Szalay, A., Expression and assembly of functional bacterial luciferase in plants, Proc. Natl. Acad. Sci. USA 84, 191, 1987.

    Google Scholar 

  206. Fujii, N., and Uchimiya, H., Conditions favorable for the somatic embryogenesis in carrot cell culture enhance expression of the rolC promoter GUS fusion gene, Plant Physiol. 95, 238, 1991.

    PubMed  CAS  Google Scholar 

  207. Schmülling, T., Schell, J., and Spena, A., Promoters of the rolA,B and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants, Plant Cell 1, 665, 1989.

    PubMed  Google Scholar 

  208. Odell, J.T., Nagy, F., and Chua, N.H., Identification of sequences required for activity of the cauliflower mosaic virus 35S promoter, Nature 313, 810, 1985.

    PubMed  CAS  Google Scholar 

  209. Benfey, P.N., and Chua, N.M., The cauliflower Hiosaic virus 35S promoter: combinatorial regulation of transcription in plants, Science 250, 959, 1990.

    PubMed  CAS  Google Scholar 

  210. Benfey, P.N., and Chua, N.M., Regulated genes in transgenic plants, Science 244, 174, 1989.

    PubMed  CAS  Google Scholar 

  211. Nagata, T., Okada, K., Kawazu, T., and Takebe, I., Cauliflower mosaic virus 35S promoter directs S phase specific expression in plant cells, Mol. Gen. Genet. 207, 242, 1987.

    CAS  Google Scholar 

  212. Halperin, W., Alternative morphogenetic events in cell suspensions, Amer. J. Bot. 53, 443, 1966.

    Google Scholar 

  213. Choi, J.H., and Sung, Z.R., Two-dimensional gel analysis of carrot somatic embryogenic proteins, Plant Mol. Biol. Rep. 2, 19, 1984.

    CAS  Google Scholar 

  214. Wilde, H.D., Nelson, W.S., Booij, H., De Vries, S.C., and Thomas, T.L., Gene expression programs in embryogenic and non-embryogenic carrot cultures, Planta 176, 205, 1988.

    CAS  Google Scholar 

  215. De Vries, S.C., Booij, H., Meyerink, P., Huisman, G., Wilde, H.D., Thomas, T.L., and Van Kammen, A., Acquisition of embryogenic potential in carrot cell-suspension cultures, Planta 176, 196, 1988.

    Google Scholar 

  216. Franz, G., Hatzopoulos, P., Jones, T.J., Kraus, S.M., and Sung, Z.R., Molecular and genetic analysis of an embryogenic gene DC 8, from Daucus carota L, Mol. Gen. Genet. 218, 143, 1989.

    PubMed  CAS  Google Scholar 

  217. Aleith, F., and Richter, G., Gene expression during induction of somatic embryogenesis in carrot cell suspensions, Planta 183, 17, 1990.

    Google Scholar 

  218. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Higashi, K., Satoh, S., Kamada, H., and Harada, H., Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot, Plant. Mol. Biol. 19, 239, 1992.

    PubMed  CAS  Google Scholar 

  219. Booij, H., Sterk, P., Schellekens, G.A., Van Kammen, A., and De Vries, S.C., Tissue and cell-specific expression of genes encoding carrot extracellular proteins, in Progress in Plant Cellular and Molecular Biology, Nijkamp, H.J.J., Van der Plas, L.H.W., and Van Aartrijk, J., Eds., Kluwer Academic Publishers, Dordrecht, 1990, 398.

    Google Scholar 

  220. Quatrano, R.S., Regulation of gene expression by abscisic acid during angiosperm embryo development, Oxford Surveys Plant Mol. Cell Biol. 3, 467, 1986.

    CAS  Google Scholar 

  221. Ammirato, P.V., Hormonal control of somatic embryo development from cultured cells of caraway, Plant Physiol. 59, 579, 1977.

    PubMed  CAS  Google Scholar 

  222. Goldberg, R.B., Barker, S.J., and Perez-Graun, L., Regulation of gene expression during plant embryogenesis, Cell 56, 149, 1989.

    PubMed  CAS  Google Scholar 

  223. Van Lammeren, A.A.M., Structure and function of the microtubular cytoskeleton during endosperm development in wheat: an immunofluorescence study, Protoplasma 146, 18, 1988.

    Google Scholar 

  224. Dijak, M., and Simmonds, D.H., Microtubule organization during early direct embryogenesis from mesophyll protoplasts of Medicago Sativa L., Plant Sci. 58, 183, 1988.

    Google Scholar 

  225. Webb, M.C., and Gunning, E.S., The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh, Planta 184, 187, 1991.

    Google Scholar 

  226. Cyr, R.J., Bustos, M.M., Guiltinan, M.J., and Fosket, D.E., Developmental modulation of tubulin protein and mRNA levels during somatic embryogenesis in cultured carrot cells, Planta 171, 365, 1987.

    CAS  Google Scholar 

  227. Katsuta, J., and Shibaoka, H., The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells, Plant Cell Physiol. 29, 403, 1988.

    CAS  Google Scholar 

  228. Bergfeld, R., Speth, V., and Schopfer, P., Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth, Bat. Acta 101, 57, 1988.

    CAS  Google Scholar 

  229. Sussmann, M.R., and Harper, J.F., Molecular biology of the plasma membrane of higher plants, Plant Cell 1, 953, 1989.

    Google Scholar 

  230. Csordás, A., On biological role of histone acetylation, Biochem. J. 265, 23, 1990.

    PubMed  Google Scholar 

  231. Deál, M., Kiss, Gy.B., Koncz, Cs., and Dudits, D., Transformation of Medicago by Agrobacterium mediated gene transfer, Plant Cell Rep., 5, 97, 1986.

    Google Scholar 

  232. Jefferson, R.A., Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 5, 387, 1987.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dudits, D., Györgyey, J., Bögre, L., Bakó, L. (1995). Molecular Biology of Somatic Embryogenesis. In: Thorpe, T.A. (eds) In Vitro Embryogenesis in Plants. Current Plant Science and Biotechnology in Agriculture, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0485-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0485-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4217-8

  • Online ISBN: 978-94-011-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics