Skip to main content
Log in

Spikes of the two-component elliptic system in \({\mathbb {R}}^4\) with the critical Sobolev exponent

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Consider the following elliptic system:

$$\begin{aligned} \left\{ \begin{aligned}&-\varepsilon ^2\Delta u_1+\lambda _1u_1=\mu _1u_1^3+\alpha _1u_1^{p-1}+\beta u_2^2u_1 \quad \text {in }\quad \Omega ,\\&-\varepsilon ^2\Delta u_2+\lambda _2u_2=\mu _2u_2^3+\alpha _2u_2^{p-1}+\beta u_1^2u_2 \quad \text {in }\quad \Omega ,\\&u_1,u_2>0\quad \text {in }\quad \Omega ,\quad u_1=u_2=0\quad \text {on }\quad \partial \Omega , \end{aligned}\right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^4\) is a bounded domain, \(\lambda _i,\mu _i,\alpha _i>0\) \((i=1,2)\) and \(\beta \not =0\) are constants, \(\varepsilon >0\) is a small parameter and \(2<p<2^*=4\). By using variational methods, we study the existence of ground state solutions to this system for sufficiently small \(\varepsilon >0\). The concentration behaviors of least-energy solutions as \(\varepsilon \rightarrow 0^+\) are also studied. Furthermore, by combining elliptic estimates and local energy estimates, we obtain the locations of these spikes as \(\varepsilon \rightarrow 0^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  2. Abdellaoui, B., Felli, V., Peral, I.: Some remarks on systems of elliptic equations doubly critical the whole \({\mathbb{R}}^N\). Calc. Var. PDEs 34, 97–137 (2009)

    Article  Google Scholar 

  3. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. PDEs 37, 345–361 (2010)

    Article  MathSciNet  Google Scholar 

  4. Byeon, J., Jeanjean, L., Maris, M.: Symmetric and monotonicity of least energy solutions. Calc. Var. PDEs 36, 481–492 (2009)

    Article  Google Scholar 

  5. Brezís, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–77 (1983)

    Article  MathSciNet  Google Scholar 

  6. Byeon, J.: Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity. Trans. Am. Math. Soc. 362, 1981–2001 (2010)

    Article  MathSciNet  Google Scholar 

  7. Byeon, J.: Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. PDEs 54, 2287–2340 (2015)

    Article  Google Scholar 

  8. Byeon, J., Zhang, J., Zou, W.: Singularly perturbed nonlinear Dirichlet problems involving critical growth. Calc. Var. PDEs 47, 65–85 (2013)

    Article  MathSciNet  Google Scholar 

  9. Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195, 524–560 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MathSciNet  Google Scholar 

  11. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. PDEs 52, 423–467 (2015)

    Article  Google Scholar 

  12. Chen, Z., Lin, C.-S., Zou, W.: Sign-changing solutions and phase separation for an elliptic system with critical exponent. Commun. PDEs 39, 1827–1859 (2014)

    Article  MathSciNet  Google Scholar 

  13. Chen, Z., Zou, W.: Existence and symmetry of positive ground states for a doubly critical Schrödinger system. Trans. Am. Math. Soc. 367, 3599–3646 (2015)

    Article  Google Scholar 

  14. Chen, Z., Lin, C.-S.: Removable singularity of positive solutions for a critical elliptic system with isolated singularity. Math. Ann. 363, 501–523 (2015)

    Article  MathSciNet  Google Scholar 

  15. Chen, Z., Lin, C.-S.: Asymptotic behavior of least energy solutions for a critical elliptic system. Int. Math. Res. Not. 21, 11045–11082 (2015)

    Article  MathSciNet  Google Scholar 

  16. Dancer, E., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  Google Scholar 

  17. Dancer, E., Santra, S., Wei, J.: Least energy nodal solution of a singular perturbed problem with jumping nonlinearity. Annali della Scuola Normale Superiore di Pisa 10, 19–36 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Esry, B., Greene, C., Burke, J., Bohn, J.: Hartree–Fock theory for double condesates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  19. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  20. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^n\). In: Mathematical Analysis and Applications, Part A, in: Advanced Mathematical Supplemented Studies, vol. 7A. Academic Press, New York, pp. 369–402 (1981)

  21. Hall, D., Matthews, M., Ensher, J., Wieman, C., Cornell, E.: Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    Article  Google Scholar 

  22. Huang, Y., Wu, T.-F., Wu, Y.: Multiple positive solutions for a class of concave–convex elliptic problems in \({\mathbb{R}}^N\) involving sign-changing weight (II). Commun. Contemp. Math. 17, 1450045 (35 pages) (2015)

    Article  Google Scholar 

  23. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. PDEs 40, 449–480 (2011)

    Article  Google Scholar 

  24. Li, Y., Ni, W.-M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}}^n\). Commun. PDEs 18, 1043–1054 (1993)

    Article  Google Scholar 

  25. Lin, T.-C., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}}^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    Article  Google Scholar 

  26. Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 403–439 (2005)

    Article  MathSciNet  Google Scholar 

  27. Lin, T.-C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  Google Scholar 

  28. Lin, T.-C., Wu, T.-F.: Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 33, 2911–2938 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    Article  Google Scholar 

  30. Liu, Z., Wang, Z.-Q.: Ground states and bound states of a nonlinear Schrödinger system. Adv. Nonlinear Stud. 10, 175–193 (2010)

    Article  MathSciNet  Google Scholar 

  31. Long, W., Peng, S.: Segregated vector solutions for a class of Bose–Einstein systems. J. Differ. Equ. 257, 207–230 (2014)

    Article  MathSciNet  Google Scholar 

  32. Luo, S., Zou, W.: Existence, nonexistence, symmetry and uniqueness of ground state for critical Schrödinger system involving Hardy term. arXiv:1608.01123v1 [math.AP]

  33. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schröodinger systems. J. Eur. Math. Soc. 10, 47–71 (2006)

    MATH  Google Scholar 

  34. Ni, W.-M., Wei, J.: On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems. Commun. Pure Appl. Math. 48, 731–768 (1995)

    Article  MathSciNet  Google Scholar 

  35. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    Article  Google Scholar 

  36. Pistoia, A., Tavares, H.: Spiked solutions for Schrödinger systems with Sobolev critical exponent: the cases of competitive and weakly cooperative interactions. J. Fixed Point Theory Appl. 19, 407–446 (2017)

    Article  MathSciNet  Google Scholar 

  37. Pistoia, A., Soave, N.: On Coron’s problem for weakly coupled elliptic systems. Proc. Lond. Math. Soc. arXiv:1610.07762

  38. Royo-Letelier, J.: Segregation and symmetry breaking of strongly coupled two-component Bose–Einstein condensates in a harmonic trap. Calc. Var. PDEs 49, 103–124 (2014)

    Article  MathSciNet  Google Scholar 

  39. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^N\). Commun. Math. Phys. 271, 199–221 (2007)

    Article  Google Scholar 

  40. Terracini, S., Verzini, G.: Multipulse phases in k-mixtures of Bose–Einstein condensates. Arch. Ration. Mech. Anal. 194, 717–741 (2009)

    Article  MathSciNet  Google Scholar 

  41. Tavares, H., Terracini, S.: Sign-changing solutions of competition–diffusion elliptic systems and optimal partition problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 279–300 (2012)

    Article  MathSciNet  Google Scholar 

  42. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  Google Scholar 

  43. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

  44. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MathSciNet  Google Scholar 

  45. Wang, J., Shi, J.: Standing waves of a weakly coupled Schrödinger system with distinct potential functions. J. Differ. Equ. 260, 1830–1864 (2016)

    Article  Google Scholar 

  46. Wu, Y., Wu, T.-F., Zou, W.: On a two-component Bose–Einstein condensate with steep potential wells. Ann. Mat. 196, 1695–1737 (2017)

    Article  MathSciNet  Google Scholar 

  47. Wu, Y.: On a \(K\)-component elliptic system with the Sobolev critical exponent in high dimensions: the repulsive case. Calc. Var. PDEs 56, 51 (2017). (article 151)

    Article  MathSciNet  Google Scholar 

  48. Wu, Y.: On the semiclassical solutions of a two-component elliptic system in R4 with trapping potentials and Sobolev critical exponent: the repulsive case. Z. Angew. Math. Phys. 69, 17 (2018). (article 111)

    Article  Google Scholar 

  49. Wu, Y.: Least energy sign-changing solutions of the singularly perturbed Brezis–Nirenberg problem. Nonlinear Anal. 171, 85–101 (2018)

    Article  MathSciNet  Google Scholar 

  50. Zhang, J., Zou, W.: A Berestycki–Lion theorem revisited. Commun. Contemp. Math. 14, 1250033 (14 pages) (2012)

    Article  MathSciNet  Google Scholar 

  51. Zhang, J., do Marcos, O.J.: Spiked vector solutions of coupled Schrödinger systems with critical exponent and solutions concentrating on spheres. Preprint (2015)

Download references

Acknowledgements

Y. Wu is supported by NSFC (11701554, 11771319), the Fundamental Research Funds for the Central Universities (2017XKQY091) and Jiangsu overseas visiting scholar program for university prominent young and middle-aged teachers and presidents. W. Zou is supported by NSFC (11771234). The authors also would like to thank the anonymous referee for very carefully reading the manuscript and wonderfully valuable comments that greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanze Wu.

Additional information

Communicated by P. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we will list known results that will be used frequently in this paper. Let \(\mathcal {H}_{i,{\mathbb {R}}^4}\) be the Hilbert space \(H^1({\mathbb {R}}^4)\) that is equipped with the inner product

$$\begin{aligned} \langle u,v\rangle _{i,{\mathbb {R}}^4}=\int _{{\mathbb {R}}^4}\nabla u\nabla v+\lambda _i uv dx. \end{aligned}$$

The corresponding norm is specified by \(\Vert u\Vert _{i,{\mathbb {R}}^4}=\langle u,u\rangle _{i,{\mathbb {R}}^4}^{\frac{1}{2}}\). Define

$$\begin{aligned} \mathcal {E}_{i,{\mathbb {R}}^4}(u)=\frac{1}{2}\Vert u\Vert _{i,{\mathbb {R}}^4}^2-\frac{\alpha _i}{p}\Vert u\Vert _{L^p({\mathbb {R}}^4)}^p-\frac{\mu _i}{4}\Vert u\Vert _{L^4({\mathbb {R}}^4)}^4. \end{aligned}$$
(6.1)

Then it is well known that \(\mathcal {E}_{i,{\mathbb {R}}^4}(u)\) is of class \(C^2\) in \(\mathcal {H}_{i,{\mathbb {R}}^4}\). Set

$$\begin{aligned} \mathcal {M}_{i,{\mathbb {R}}^4}=\left\{ u\in \mathcal {H}_{i,{\mathbb {R}}^4}\backslash \{0\}\mid \mathcal {E}_{i,{\mathbb {R}}^4}'(u)u=0\right\} . \end{aligned}$$
(6.2)

and define

$$\begin{aligned} d_{i,{\mathbb {R}}^4}=\inf _{\mathcal {M}_{i,{\mathbb {R}}^4}}\mathcal {E}_{i,{\mathbb {R}}^4}(u). \end{aligned}$$
(6.3)

Proposition 6.1

\(0< d_{i,{\mathbb {R}}^4}<\frac{1}{4\mu _i}\mathcal {S}^2\) holds for both \(i=1,2\), where \(\mathcal {S}\) is the optimal embedding constant from \(H^1({\mathbb {R}}^4)\rightarrow L^4({\mathbb {R}}^4)\), which is defined by

$$\begin{aligned} \mathcal {S}=\inf \left\{ \Vert \nabla u\Vert _{L^2({\mathbb {R}}^4)}^2\mid u\in H^1({\mathbb {R}}^4), \Vert u\Vert _{L^4({\mathbb {R}}^4)}^2=1\right\} . \end{aligned}$$

Moreover, \(d_{i,{\mathbb {R}}^4}\) is attained by some \(U_{i,{\mathbb {R}}^4}\in \mathcal {M}_{i,{\mathbb {R}}^4}\), which is also a solution of the following equation

figure n

Proof

See the results in [50]. \(\square \)

Let \(\Omega \subset {\mathbb {R}}^4\) be a bounded domain, \(\lambda _i,\mu _i,\alpha _i>0(i=1,2)\) constants, \(\varepsilon >0\) a small parameter and \(2<p<2^*=4\). Let

$$\begin{aligned} \mathcal {E}_{i,\varepsilon ,\Omega }(u)=\frac{1}{2}\Vert u\Vert _{i,\varepsilon ,\Omega }^2-\frac{\alpha _i}{p}\Vert u\Vert _{L^p(\Omega )}^p-\frac{\mu _i}{4}\Vert u\Vert _{L^4(\Omega )}^4. \end{aligned}$$
(6.4)

Then it is well known that \(\mathcal {E}_{i,\varepsilon ,\Omega }(u)\) is of class \(C^2\) in \(\mathcal {H}_{i,\varepsilon ,\Omega }\). Set

$$\begin{aligned} \mathcal {M}_{i,\varepsilon ,\Omega }=\left\{ u\in \mathcal {H}_{i,\varepsilon ,\Omega }\backslash \{0\}\mid \mathcal {E}_{i,\varepsilon ,\Omega }'(u)u=0\right\} \end{aligned}$$
(6.5)

and define

$$\begin{aligned} d_{i,\varepsilon ,\Omega }=\inf _{\mathcal {M}_{i,\varepsilon ,\Omega }}\mathcal {E}_{i,\varepsilon ,\Omega }(u),\quad i=1, 2. \end{aligned}$$
(6.6)

Proposition 6.2

Let \(\varepsilon >0\) be sufficiently small. Then, \(\varepsilon ^4C'\le d_{i,\varepsilon ,\Omega }\le \frac{\varepsilon ^4}{4\mu _i}\mathcal {S}^2-\varepsilon ^4C\) for both \(i=1,2\). Moreover, there exists \({\widetilde{U}}_{i,\varepsilon }\in \mathcal {M}_{i,\varepsilon ,\Omega }\) such that \(\mathcal {E}_{i,\varepsilon ,\Omega }({\widetilde{U}}_{i,\varepsilon })=d_{i,\varepsilon ,\Omega }\), which is also a solution of the following equation:

figure o

\(i=1,2\), Moreover, \({\widetilde{U}}_{i,\varepsilon }(\varepsilon y+q_i^\varepsilon )\rightarrow v_i^0\) strongly in \(\mathcal {H}_{i,{\mathbb {R}}^4}\) as \(\varepsilon \rightarrow 0^+\) and \(\{{\widetilde{U}}_{i,\varepsilon }\}\) is uniformly bounded in \(L^\infty (\Omega )\), where \(q_i^\varepsilon \) is the maximum point of \({\widetilde{U}}_{i,\varepsilon }\) and \(v_i^0\) is a least-energy solution of \((\mathcal {P}_{i})\).

Proof

By the results in [8], \(\varepsilon ^4 C'\le d_{i,\varepsilon ,\Omega }\le \frac{\varepsilon ^4}{4\mu _i}\mathcal {S}^2-\varepsilon ^4C\) for both \(i=1,2\). Regarding the remaining results, we believe that they exist but we can not find the references; thus, we will sketch their proofs here. We only present the proof for \((\mathcal {P}_{1,\varepsilon })\) since that of \((\mathcal {P}_{2,\varepsilon })\) is similar. Once again, by the result in [8], \(d_{1,\varepsilon ,\Omega }<\frac{\varepsilon ^4}{4\mu _1}\mathcal {S}^2-\varepsilon ^4C\) for sufficiently small \(\varepsilon >0\). Since \(p>2\), \(\mathcal {M}_{i,\varepsilon ,\Omega }\) is a natural constraint. Hence, by applying the concentration-compactness principle in a standard way, we can show that \((\mathcal {P}_{i,\varepsilon })\) has a least-energy solution \({\widetilde{U}}_{i,\varepsilon }\) that satisfies \({\widetilde{U}}_{i,\varepsilon }\in \mathcal {M}_{i,\varepsilon ,\Omega }\) and \(\mathcal {E}_{i,\varepsilon ,\Omega }({\widetilde{U}}_{i,\varepsilon })=d_{i,\varepsilon ,\Omega }\). Now, let us consider the functions \({\widetilde{U}}_{i,\varepsilon }(\varepsilon y+q_i^\varepsilon )\). By a similar argument to that used for Proposition 3.2, we can show that the only solution of the following equation is \(u\equiv 0\):

$$\begin{aligned} \left\{ \begin{aligned}&-\Delta u+\lambda _1u=\mu _1u^3+\alpha _1u^{p-1}\quad \text {in }\quad {\mathbb {R}}^4_+,\\&u\ge 0\quad \text {in }\quad {\mathbb {R}}^4_+,\quad u=0\quad \text {on }\quad \partial {\mathbb {R}}^4_+.\end{aligned}\right. \end{aligned}$$

Thus, if \(\Omega ^*_{i,\varepsilon }\rightarrow {\mathbb {R}}^4_+\) as \(\varepsilon \rightarrow 0^+\), then by a similar argument to that used for Lemma 4.2, we can obtain a contradiction since \(d_{1,\varepsilon ,\Omega }<\frac{\varepsilon ^4}{4\mu _1}\mathcal {S}^2-\varepsilon ^4C\) for \(\varepsilon >0\) sufficiently small. Hence, \(\Omega ^*_{i,\varepsilon }\rightarrow {\mathbb {R}}^4\) as \(\varepsilon \rightarrow 0^+\). Now, by the result in [8] and a similar argument to that used in Case. 1 of the proof to Proposition 4.1, we can show that \({\widetilde{U}}_{i,\varepsilon }(\varepsilon y+q_i^\varepsilon )\rightarrow v_i^0\) strongly in \(\mathcal {H}_{i,{\mathbb {R}}^4}\) as \(\varepsilon \rightarrow 0^+\), where \(v_i^0\) is a least-energy solution of \((\mathcal {P}_{i})\). The uniform boundedness of \(\{{\widetilde{U}}_{i,\varepsilon }\}\) in \(L^\infty (\Omega )\) can be obtained via standard elliptic estimates (cf. [8, 10]). \(\square \)

Let

$$\begin{aligned} \mathcal {I}_{\varepsilon }(\overrightarrow{{\mathbf {u}}})=\sum _{i=1}^2\left( \frac{\varepsilon ^2}{2}\Vert \nabla u_i\Vert _{L^2({\mathbb {R}}^4)}^2-\frac{\mu _i}{4}\Vert u_i\Vert _{L^4({\mathbb {R}}^4)}^4\right) -\frac{\beta }{2}\Vert u_1u_2\Vert _{L^2({\mathbb {R}}^4)}^2. \end{aligned}$$
(6.7)

Then \(\mathcal {I}_{\varepsilon }\) is of class \(C^2\) in \(\mathcal {D}=D^{1,2}({\mathbb {R}}^4)\times D^{1,2}({\mathbb {R}}^4)\). Set \(A_\varepsilon =\inf _{\mathcal {V}_{\varepsilon }}\mathcal {I}_{\varepsilon }(\overrightarrow{{\mathbf {u}}})\), where

$$\begin{aligned} \mathcal {V}_{\varepsilon }=\left\{ \overrightarrow{{\mathbf {u}}}\in \widetilde{\mathcal {D}}\mid \mathcal {I}'_{\varepsilon }(\overrightarrow{{\mathbf {u}}})\overrightarrow{{\mathbf {u}}}_1=\mathcal {I}'_{\varepsilon }(\overrightarrow{{\mathbf {u}}})\overrightarrow{{\mathbf {u}}}_2=0\right\} \end{aligned}$$
(6.8)

with \(\widetilde{\mathcal {D}}=(D^{1,2}({\mathbb {R}}^4)\backslash \{0\})\times (D^{1,2}({\mathbb {R}}^4)\backslash \{0\})\).

Proposition 6.3

\(A_\varepsilon =\varepsilon ^4A_1\) holds. Moreover, \(A_1=\frac{1}{4\mu _1}\mathcal {S}^2+\frac{1}{4\mu _2}\mathcal {S}^2\) for \(\beta <0\) and \(A_1=\frac{k_1+k_2}{4}\mathcal {S}^2\) for \(0<\beta <\min \{\mu _1,\mu _2\}\) or \(\beta >\max \{\mu _1,\mu _2\}\) with \(k_1,k_2\) satisfying

$$\begin{aligned} \left\{ \begin{aligned} \mu _1k_1+\beta k_2&=1,\\ \mu _2k_2+\beta k_1&=1.\end{aligned}\right. \end{aligned}$$
(6.9)

Proof

See the results in [10]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zou, W. Spikes of the two-component elliptic system in \({\mathbb {R}}^4\) with the critical Sobolev exponent. Calc. Var. 58, 24 (2019). https://doi.org/10.1007/s00526-018-1479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1479-7

Mathematics Subject Classification

Navigation