Skip to main content
Log in

Some remarks on systems of elliptic equations doubly critical in the whole \({\mathbb{R}^N}\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence of different types of positive solutions to problem

$$\left\{\begin{array}{lll} -\Delta u - \lambda_1\dfrac{u}{|x|^2}-|u|^{2^*-2}u = \nu\,h(x)\alpha\,|u|^{\alpha-2}|v|^{\beta}u, &{\rm in}\,{\mathbb{R}}^{N},\\ &\qquad\qquad\qquad\qquad x \in {\mathbb{R}}^N,\quad N \geq 3,\\ -\Delta v - \lambda_2\dfrac{v}{|x|^2}-|v|^{2^*-2}v = \nu\,h(x)\beta\,|u|^{\alpha}|v|^{\beta-2}v, &{\rm in}\,{\mathbb{R}}^N, \end{array}\right.$$

where \({\lambda_1, \lambda_2 \in (0, \Lambda_N)}\) , \({\Lambda_N := \frac{(N-2)^2}{4}}\) , and \({2* = \frac{2N}{N-2}}\) is the critical Sobolev exponent. A careful analysis of the behavior of Palais-Smale sequences is performed to recover compactness for some ranges of energy levels and to prove the existence of ground state solutions and mountain pass critical points of the associated functional on the Nehari manifold. A variational perturbative method is also used to study the existence of a non trivial manifold of positive solutions which bifurcates from the manifold of solutions to the uncoupled system corresponding to the unperturbed problem obtained for ν = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellaoui, B., Felli, V., Peral, I.: Existence and multiplicity for perturbations of an equation involving a Hardy inequality and the critical Sobolev exponent in the whole of \({\mathbb{R}^N}\) . Adv. Differ. Equat. 9(5–6), 481–508 (2004)

    MATH  MathSciNet  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  3. Ambrosetti, A., Badiale, M.: Variational perturbative methods and bifurcation of bound states from the essential spectrum. Proc. Roy. Soc. Edinburgh Sect. A 128(6), 1131–1161 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Badiale, M.: Homoclinics: Poincaré–Melnikov type results via a variational approach. Ann. Inst. H. Poincaré Anal. Non Linéaire 15(2), 233–252 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342(7), 453–458 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Ambrosetti, A., Colorado, E., Ruiz, D.: Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations. Calc. Var. Partial Differ.l Equat. 30(1), 85–112 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems on \({\mathbb{R}^N}\) , Progress in Mathematics, 240. Birkhäuser Verlag, Basel (2006)

    Google Scholar 

  9. Ambrosetti, A., Garcia Azorero, J., Peral, I.: Elliptic variational problems in \({\mathbb{R}^N}\) with critical growth, Special issue in celebration of Jack K. Hale’s 70th birthday, Part 1 (Atlanta, GA/Lisbon, 1998). J. Differ. Equat. 168(1), 10–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bidaut-Veron, M.F., Grillot, P.: Singularities in elliptic systems with absorption terms. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(4), 229–271 (1999)

    MATH  MathSciNet  Google Scholar 

  11. De Figueiredo, D.G., Peral, I., Rossi, J.: The critical hyperbola for a hamiltonian elliptic system with weights. Annali di Matematica Pura ed Applicata online, doi:10.1007/s10231-007-0054-1

  12. Felli, V., Pistoia, A.: Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth. Commun. Partial Differ. Equat. 31(1-3), 21–56 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Felli, V., Schneider, M.: Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type. J. Differ. Equat. 191, 121–142 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Felli, V., Schneider, M.: A note on regularity of solutions to degenerate elliptic equations of Caffarelli-Kohn-Nirenberg type. Adv. Nonlinear Stud. 3, 431–443 (2003)

    MATH  MathSciNet  Google Scholar 

  15. Felli, V., Terracini, S.: Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential. Commun. Contemp. Math. 7(6), 867–904 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaminow, I.P.: Polarization in optical fibers. IEEE J. Quantum Electron. 17, 15–22 (1981)

    Article  Google Scholar 

  17. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 1. Rev. Matemática Iberoamericana 1(1), 145–201 (1985)

    MATH  Google Scholar 

  18. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Matemática Iberoamericana 1(2), 45–121 (1985)

    MATH  Google Scholar 

  19. Lin, T.-C., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^N}\) , n  ≤  3. Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equat. 229(2), 743–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Menyuk, C.R.: Nonlinear pulse propagation in birefringence optical fiber. IEEE J. Quantum Electron. 23, 174–176 (1987)

    Article  Google Scholar 

  22. Menyuk, C.R.: Pulse propagation in an elliptically birefringent Kerr medium. IEEE J. Quantum Electron. 25, 2674–2682 (1989)

    Article  Google Scholar 

  23. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger system. J. E. M. S. 10(1), 47–71 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pomponio, A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equat. 227(1), 258–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sirakov, B.: Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in \({\mathbb{R}^N}\) . Commun. Math. Phys. 271(1), 199–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Smets, D.: Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. AMS 357, 2909–2938 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  28. Terracini, S.: On positive entire solutions to a class of equations with singular coefficient and critical exponent. Adv. Differ. Equat. 1(2), 241–264 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ireneo Peral.

Additional information

B. Abdellaoui and I. Peral supported by projects MTM2007-65018, MEC and CCG06-UAM/ESP-0340, Spain. V. Felli supported by Italy MIUR, national project Variational Methods and Nonlinear Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdellaoui, B., Felli, V. & Peral, I. Some remarks on systems of elliptic equations doubly critical in the whole \({\mathbb{R}^N}\) . Calc. Var. 34, 97–137 (2009). https://doi.org/10.1007/s00526-008-0177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0177-2

Keywords

Mathematics Subject Classification (2000)

Navigation