Skip to main content
Log in

Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate:

$$\begin{aligned} \left\{ {\begin{array}{lll} -\Delta u +\lambda _1 u = \mu _1 u^{2^*-1}+\beta u^{\frac{2^*}{2}-1}v^{\frac{2^*}{2}}, \quad x\in \Omega ,\\ -\Delta v +\lambda _2 v =\mu _2 v^{2^*-1}+\beta v^{\frac{2^*}{2}-1} u^{\frac{2^*}{2}}, \quad x\in \Omega ,\\ u\ge 0, v\ge 0 \,\,\hbox {in } \Omega ,\quad u=v=0 \,\,\hbox {on } \partial \Omega . \end{array}}\right. \end{aligned}$$

Here \(\Omega \subset \mathbb R^N\) is a smooth bounded domain, \(2^*:=\frac{2N}{N-2}\) is the Sobolev critical exponent, \(-\lambda _1(\Omega )<\lambda _1,\lambda _2<0\), \(\mu _1,\mu _2>0\) and \(\beta \ne 0\), where \(\lambda _1(\Omega )\) is the first eigenvalue of \(-\Delta \) with the Dirichlet boundary condition. When \(\beta =0\), this is just the well-known Brezis–Nirenberg problem. The special case \(N=4\) was studied by the authors in (Arch Ration Mech Anal 205:515–551, 2012). In this paper we consider the higher dimensional case \(N\ge 5\). It is interesting that we can prove the existence of a positive least energy solution \((u_\beta , v_\beta )\) for any \(\beta \ne 0\) (which can not hold in the special case \(N=4\)). We also study the limit behavior of \((u_\beta , v_\beta )\) as \(\beta \rightarrow -\infty \) and phase separation is expected. In particular, \(u_\beta -v_\beta \) will converge to sign-changing solutions of the Brezis–Nirenberg problem, provided \(N\ge 6\). In case \(\lambda _1=\lambda _2\), the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case \(N=4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  Google Scholar 

  3. Abdellaoui, B., Felli, V., Peral, I.: Some remarks on systems of elliptic equations doubly critical in the whole \(\cal R^N\). Calc. Var. PDE 34, 97–137 (2009)

    Google Scholar 

  4. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Adimurthi, S.L.: Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear dirichlet problem. Arch. Ration. Mech. Anal. 127, 219–229 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. PDE 37, 345–361 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezis, H., Kato, T.: Remarks on the Schrodinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MATH  MathSciNet  Google Scholar 

  9. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Lin, F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caffarelli, L.A., Roquejoffre, J.M.: Uniform Höder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames. Arch. Ration. Mech. Anal. 183, 457–487 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cerami, G., Fortunato, D., Struwe, M.: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincare-Analyse, Nonlinear 1, 341–350 (1984)

  13. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69, 289–306 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chen, Z., Zou, W.: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system. Calc. Var. PDE 48, 695–711 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, Z., Zou, W.: On the Brezis–Nirenberg problem in a ball. Differ. Integr. Equ. 25, 527–542 (2012)

    MathSciNet  Google Scholar 

  16. Chen, Z., Zou, W.: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal. 205, 515–551 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Conti, M., Terracini, S., Verzini, G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195, 524–560 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Devillanova, G., Solimini, S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equ. 7, 1257–1280 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Dancer, N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems. Ann. Inst. H. Poincaré AN. 27, 953–969 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Esry, B., Greene, C., Burke, J., Bohn, J.: Hartree–Fock theory for double condesates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  Google Scholar 

  21. Frantzeskakis, D.J.: Dark solitons in atomic Bose-Einstein condesates: from theory to experiments. J. Phys. A 43, 213001 (2010)

    Article  MathSciNet  Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn, Grundlehren, vol. 224. Springer, Berlin (1983)

  23. Kim, S.: On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Commun. Pure Appl. Anal. 12, 1259–1277 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kivshar, YuS, Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  25. Lin, T., Wei, J.: Ground state of \(N\) coupled nonlinear Schrödinger equations in \(^n\), \(n\le 3\). Commun. Math. Phys. 255, 629–653 (2005)

  26. Liu, Z., Wang, Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    Article  MATH  Google Scholar 

  27. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Studies 4, 563–574 (2004)

    MATH  Google Scholar 

  28. Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger systems. J. Differ. Equ. 229, 743–767 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    MATH  MathSciNet  Google Scholar 

  30. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \(^n\). Commun. Math. Phys. 271, 199–221 (2007)

    Google Scholar 

  31. Struwe, M.: Variational Methods—Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. springer, Berlin (1996)

  32. Szukin, A., Weth, T.: The method of Nehari manifolds. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

  33. Schechter, M., Zou, W.: On the Brezis–Nirenberg problem. Arch. Ration. Mech. Anal. 197, 337–356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  34. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pure Appl. 110, 352–372 (1976)

    Article  MathSciNet  Google Scholar 

  35. Wei, J., Weth, T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wei, J., Weth, T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21, 305–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure. Appl. Anal. 11, 1003–1011 (2012)

    Google Scholar 

  38. Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)

Download references

Acknowledgments

The authors wish to thank the anonymous referees very much for their careful reading and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zou.

Additional information

Communicated by P. Rabinowitz.

Zou is supported by NSFC (11025106, 11371212, 11271386) and the Both-Side Tsinghua Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zou, W. Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. 52, 423–467 (2015). https://doi.org/10.1007/s00526-014-0717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0717-x

Mathematics Subject Classification (2010)

Navigation