Skip to main content
Log in

Segregation and symmetry breaking of strongly coupled two-component Bose–Einstein condensates in a harmonic trap

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study ground states of two-component condensates in a harmonic trap. We prove that in the strongly coupled and weakly interacting regime, the two components segregate while a symmetry breaking occurs. More precisely, we show that when the intercomponent coupling strength is very large and both intracomponent coupling strengths are small, each component is close to the positive or the negative part of a second eigenfunction of the harmonic oscillator in \({\mathbb{R}^2}\) . As a result, the supports of the components approach complementary half-spaces, and they are not radially symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion A.: Vortices in Bose–Einstein condensates, vol. 67 of Progress in nonlinear differential equations and their applications Birkhäuser, 2006

  2. Alt H. W., Caffarelli L. A., Friedman A.: Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc 282(2), 431–461 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki H., Lin T.-C., Wei J., Zhao C.: On phase-separation model: asymptotics and qualitative properties.(2010)(Preprint)

  4. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80(885), 885–964 (2008)

    Article  Google Scholar 

  5. Brascamp H. J., Lieb E. H.: On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22, 366–389 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brothers J., Ziemer W.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math. 384, 153–179 (1988)

    MATH  MathSciNet  Google Scholar 

  7. Caffarelli A., Kenig C. E.: Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Am. J. Math. 120(2), 391–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli L. A., Karakhanyan A. L., Lin F.-H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5, 319–351 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caffarelli L. A., Lin F.-H.: An optimal partition problem for eigenvalues. J. Sci. Comput. 31(1-2), 5–18 (2007)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli L. A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang S.-M., Lin C.-S., Lin T.-C., Lin W.-W.: Segregated nodal domains of two-dimensional multispecies Bose–Einstein condensates. Physica D 196(3-4), 341–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Conti M., Terracini S., Verzini G.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195(2), 524–560 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Conti M., Terracini S., Verzini G.: On a class of optimal partition problem related to the Fučík spectrum and to the monotonicity formulae. Calc. Var. 22(1), 45–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Conti M., Terracini S., Verzini G.: A variational problem for the spatial segregation of reaction–diffusion systems. Indiana Univ. Math. J 54(3), 779–815 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ehrhard A.: Symétrisation dans l’espace de Gauss. Math. Scand. 53(2), 281–301 (1983)

    MATH  MathSciNet  Google Scholar 

  16. Ehrhard A.: Inégalités isopérimetriques et intégrales de Dirichlet gaussiennes. Ann. Sci. École Norm. Sup. 17, 317–332 (1984)

    MATH  MathSciNet  Google Scholar 

  17. Gilbarg D., Trudinger N. S.: Elliptic partial differential equations of second order. Springer, New York (1977)

    Book  MATH  Google Scholar 

  18. Hall D. S., Matthews M. R., Ensher J. R., Wieman C. E., Cornell E. A.: Dynamics of component separation in a binary mixture of Bose–Einstein condensates. Phys. Rev. Lett. 81(8), 1539–1542 (1998)

    Article  Google Scholar 

  19. Helffer B., Hoffmann-Ostenhof T.: Converse spectral problems for nodal domains. Mosc. Math. J. 7(1), 67–84 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Helffer B., Hoffmann-Ostenhof T., Terracini S.: Nodal domains and spectral minimal partitions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26(1), 101–138 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ignat R., Millot V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kasamatsu K., Tsubota M., Ueda M.: Vortices in multicomponent Bose–Einstein condensates. Int. J. Mod. Phys. B 19, 1835 (2005)

    Article  MATH  Google Scholar 

  23. Kasamatsu K., Yasui Y., Tsubota M.: Macroscopic quantum tunneling of two-component Bose–Einstein condensates. Phys. Rev. A 64, 053605 (2001)

    Article  Google Scholar 

  24. Lin T.-C., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n}\) , n ≤ 3. Commun. Math. Phys. 255(3), 629–653 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu Z.: Phase separation of two-component Bose–Einstein condensates. J. Math. Phys. 50(10), 102–104 (2009)

    Article  Google Scholar 

  26. Mason P., Aftalion A.: Classification of the ground states and topological defects in a rotating two-component Bose–Einstein condensate. Phys. Rev. A 84(3), 033611 (2011)

    Article  Google Scholar 

  27. Matthews M. R., Hall D. S., Jin D. S., Ensher J. R., Wieman C. E., Cornell E. A.: Dynamical response of a Bose–Einstein condensate to a discontinuous change in internal state. Phys. Rev. Lett. 81(2), 243–247 (1998)

    Article  Google Scholar 

  28. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Papp S. B., Pino J. M., Wieman C. E.: Tunable miscibility in a dual-species Bose–Einstein condensate. Phys. Rev. Lett. 101(4), 040402 (2008)

    Article  Google Scholar 

  30. Pólya G., Szegő G.: Isoperimetric inequalities in mathematical physics. Annals of mathematics studies, vol. 27. Princeton University Press, Princeton (1951)

  31. Sarvas J.: Symmetrization of condensers in n-space. Ann. Acad. Sci. Fenn. A 522, 522 (1972)

    Google Scholar 

  32. Thalhammer G., Barontini G., Sarlo L. D., Catani J., Minardi F., Inguscio M.: Double species Bose–Einstein condensate with tunable interspecies interactions. Phys. Rev. Lett. 100(21), 210402 (2008)

    Article  Google Scholar 

  33. Wei J., Weth T.: Nonradial symmetric bound states for a system of coupled Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 18(3), 279–293 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wei J., Weth T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21(2), 305–317 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wei J., Weth T.: Radial solutions and phase separation in a system of two coupled schrödinger equations. Arch. Rational. Mech. Anal. 190(1), 83–106 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimena Royo-Letelier.

Additional information

Communicated by F.H.Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Royo-Letelier, J. Segregation and symmetry breaking of strongly coupled two-component Bose–Einstein condensates in a harmonic trap. Calc. Var. 49, 103–124 (2014). https://doi.org/10.1007/s00526-012-0571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0571-7

Mathematics Subject Classification (2000)

Navigation