Skip to main content
Log in

On the Hölder regularity for solutions of integro-differential equations like the anisotropic fractional Laplacian

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper we study integro-differential equations like the anisotropic fractional Laplacian. As in Silvestre (Indiana Univ Math J 55:1155–1174, 2006), we adapt the De Giorgi technique to achieve the \(C^{\gamma }\)-regularity for solutions of class \(C^{2}\) and use the geometry found in Caffarelli et al. (Math Ann 360(3–4): 681–714, 2014) to get an ABP estimate, a Harnack inequality and the interior \(C^{1, \gamma }\) regularity for viscosity solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. arxiv:1504.08292v6

  2. Caffarelli, L.A., Calderón, C.P.: Weak type estimates for the Hardy–Littlewood maximal functions. Stud. Math. 49, 217–223 (1974)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., Calderón, C.P.: On Abel summability of multiple Jacobi series. Colloq. Math. 30, 277–288 (1974)

    Article  MathSciNet  Google Scholar 

  4. Chaker, J., Kassmann, M.: Nonlocal operators with singular anisotropic kernels. Commun. Partial Differ. Equ. 45(1), 1–31 (2020)

    Article  MathSciNet  Google Scholar 

  5. Caffarelli, L., Leitão, R., Urbano, J.M.: Regularity for anisotropic fully nonlinear integro-differential equations. Math. Ann. 360(3–4), 681–714 (2014)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A., Silvestre: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 45(32), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)

    Article  MathSciNet  Google Scholar 

  9. Caffarelli, L., Teimurazyan, R., Urbano, J.M.: Fully nonlinear integro-differential equations with deforming kernels. Commun. Partial Differ. Equ. 45(8), 847–871 (2020)

    Article  MathSciNet  Google Scholar 

  10. De Giorgi, E.: Sulla differenziabilit‘a e l’analiticit‘a delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino. Cl. Sci. Fis.Mat. Nat. (3) 3, 25–43 (1957)

    MathSciNet  Google Scholar 

  11. Hanyga, A., Magin, R.L.: A new anisotropic fractional model of diffusion suitable for applications of diffusion tensor imaging in biological tissues. Proc. R. Soc. A 470, 20140319 (2014)

    Article  MathSciNet  Google Scholar 

  12. Hanyga, A., Seredynska, M.: Anisotropy in high-resolution diffusion-weighted MRI and anomalous diffusion. J. Magn. Reson. 220, 85–93 (2012). https://doi.org/10.1016/j.jmr.2012.05.001

    Article  Google Scholar 

  13. Landis, E.M.: Second Order Equations of Elliptic and Parabolic Type, Translations of Mathematical Monographs, vol. 171. American Mathematical Society, Providence (1998)

    Google Scholar 

  14. Leitão, R.: Almgren’s frequency formula for an extension problem related to the anisotropic fractional Laplacian. Rev. Mat. Iberoam. 36(3), 641–660 (2020)

    Article  MathSciNet  Google Scholar 

  15. Meerschaert, M., Magin, R., Ye, A.: Anisotropic fractional diffusion tensor imaging. J. Vib. Control 22(9), 2211–2221 (2016). https://doi.org/10.1177/1077546314568696

    Article  MathSciNet  MATH  Google Scholar 

  16. Orovio, A., Teh, I., Schneider, J., Burrage, K., Grau, V.: Anomalous diffusion in cardiac tissue as an index of myocardial microstructure. IEEE Trans. Med. Imaging 35(9), 2200–2207 (2016). https://doi.org/10.1109/TMI.2016.2548503

    Article  Google Scholar 

  17. Reich, N.: Anisotropic operator symbols arising from multivariate jump processes. Integral Equ. Oper. Theory 63, 127–150 (2009)

    Article  MathSciNet  Google Scholar 

  18. Silvestre, L.: Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MathSciNet  Google Scholar 

  19. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

EBS and RAL thank the Analysis research group of UFC for fostering a pleasant and productive scientific atmosphere. EBS supported by CAPES-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Leitão.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, E.B.d., Leitão, R. On the Hölder regularity for solutions of integro-differential equations like the anisotropic fractional Laplacian. Partial Differ. Equ. Appl. 2, 25 (2021). https://doi.org/10.1007/s42985-021-00083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00083-x

Keywords

Mathematics Subject Classification

Navigation