Skip to main content
Log in

Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we study the following coupled Schrödinger system, which can be seen as a critically coupled perturbed Brezis–Nirenberg problem:

$$\left\{\begin{array}{ll}-\Delta u +\lambda_1 u = \mu_1 u^3+\beta uv^2, \quad x\in \Omega,\\-\Delta v +\lambda_2 v =\mu_2 v^3+\beta vu^2, \quad x\in \Omega,\\u\geqq 0, v\geqq 0\, {\rm in}\, \Omega,\quad u=v=0 \quad {\rm on}\, \partial\Omega.\end{array}\right.$$

Here, \({\Omega\subset \mathbb{R}^4}\) is a smooth bounded domain, \({-\lambda_1(\Omega) < \lambda_1,\lambda_2 < 0 , \mu_1,\mu_2 > 0 }\) and \({\beta\neq 0}\) , where \({\lambda_1(\Omega)}\) is the first eigenvalue of −Δ with the Dirichlet boundary condition. Note that the nonlinearity and the coupling terms are both critical in dimension 4 (that is, \({\frac{2N}{N-2}=4}\) when N = 4). We show that this critical system has a positive least energy solution for negative β, positive small β and positive large β. For the case in which \({\lambda_1=\lambda_2}\) , we obtain the uniqueness of positive least energy solutions. We also study the limit behavior of the least energy solutions in the repulsive case \({\beta\to -\infty}\) , and phase separation is expected. These seem to be the first results for this Schrödinger system in the critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin T.: Problemes isoperimetriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Akhmediev N., Ankiewicz A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661–2664 (1999)

    Article  ADS  Google Scholar 

  3. Ambrosetti A., Colorado E.: Bound and ground states of coupled nonlinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 342, 453–458 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosetti A., Colorado E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosotti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  Google Scholar 

  6. Adimurthi , Yadava S.L.: An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem. Arch. Ration. Mech. Anal., 127, 219–229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch T., Dancer N., Wang Z.-Q.: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. PDE 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis H., Kato T.: Remarks on the Schrodinger operator with singular complex potentials. J. Math. Pures et Appl. 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Brezis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartsch T., Wang Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Bartsch T., Wang Z.-Q., Wang Z.-Q., Wang Z.-Q.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byeon, J., Zhang, J., Zou, W.: Singularly perturbed nonlinear Dirichlet problems involving critical growth, preprint.

  13. Caffarelli L.A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caffarelli L.A., Roquejoffre J. M.: Uniform Höder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames. Arch. Ration. Mech. Anal. 183, 457–487 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conti M., Terracini S., Terracini S., Terracini S.: Asymptotic estimates for the spatial segregation of competitive systems. Adv. Math. 195, 524–560 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbarg, D., Trudinger, N.S.: Elliptic partial Differential Equations of Second Order, 2nd edn. (Grundlehren der mathematischen Wissenschaften, 224). Springer, Berlin, 1983

  17. Dancer N., Wei J., Weth T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Esry B., Greene C., Burke J., Bohn J.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78, 3594–3597 (1997)

    Article  ADS  Google Scholar 

  19. Lieb E., Loss M.: Analysis. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  20. Lin T., Wei J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n, n\geqq 3}\) . Commun. Math. Phys. 255, 629–653 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Lin T., Wei J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 403–439 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Lin T., Wei J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Z., Wang Z.-Q.: Multiple bound states of nonlinear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    Article  ADS  MATH  Google Scholar 

  24. Maia L., Montefusco E., Pellacci B.: Positive solutions for a weakly coupled nonlinear Schrödinger systems. J. Differ. Equ. 229, 743–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maia L., Pellacci B., Squassina M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 47–71 (2007)

    Google Scholar 

  26. Noris B., Ramos M.: Existence and bounds of positive solutions for a nonlinear Schrödinger system. Proc. Am. Math. Soc. 138, 1681–1692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Pomponio A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227, 258–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sirakov B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\) . Commun. Math. Phys. 271, 199–221 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Struwe M.: Variational Methods—Applications to Nonlinear Partial Differential Equations and Hamiltonian systems. Springer, Berlin (1996)

    MATH  Google Scholar 

  31. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pure Appl. 110, 352–372 (1976)

    MathSciNet  Google Scholar 

  32. Wei J., Weth T.: Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Rend. Lincei Mat. Appl. 18, 279–293 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Wei J., Weth T.: Radial solutions and phase separation in a system of two coupled Schrödinger equations. Arch. Ration. Mech. Anal. 190, 83–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei J., Weth T.: Asymptotic behaviour of solutions of planar elliptic systems with strong competition. Nonlinearity 21, 305–317 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. (accepted)

  36. Willem M.: Minimax Theorems. Birkhäuser, Basel (1996)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenming Zou.

Additional information

Communicated by P. Rabinowitz

Supported by NSFC (11025106, 10871109).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Zou, W. Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent. Arch Rational Mech Anal 205, 515–551 (2012). https://doi.org/10.1007/s00205-012-0513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0513-8

Keywords

Navigation