Skip to main content

Advertisement

Log in

Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in \({\mathbb{R}^n}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider systems of coupled Schrödinger equations which appear in nonlinear optics. The problem has been considered mostly in the one-dimensional case. Here we make a rigorous study of the existence of least energy standing waves (solitons) in higher dimensions. We give: conditions on the parameters of the system under which it possesses a solution with least energy among all multi-component solutions; conditions under which the system does not have positive solutions and the associated energy functional cannot be minimized on the natural set where the solutions lie.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev N. and Ankiewicz A. (1999). Partially coherent solitons on a finite background. Phys. Rev. Lett. 82: 2661–2664

    Article  ADS  Google Scholar 

  2. Ambrosetti A. and Colorado E. (2006). Bound and ground states of coupled nonlinear Schrödinger equations. Comptes Rendus Mathematique 342(7): 453–458

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. Preprint

  4. Buljan H., Schwartz T., Segev M. and Soljacic M. (2004). Christoudoulides, D.: Polychromatic partially spatially incoherent solitons in a noninstantaneous Kerr nonlinear medium. J. Opt. Soc. Am. B. 21(2): 397–404

    Article  ADS  Google Scholar 

  5. Busca J. and Sirakov B. (2000). Symmetry results for semilinear elliptic systems in the whole space. J. Diff. Eq. 163(1): 41–56

    Article  MATH  MathSciNet  Google Scholar 

  6. Busca J. and Sirakov B. (2004). Harnack type estimates for nonlinear elliptic systems and applications. Ann. Inst. H. Poincaré Anal. Non Lin. 21(5): 543–590

    Article  MATH  MathSciNet  Google Scholar 

  7. Christodoulides D., Eugenieva E., Coskun T., Mitchell M. and Segev M. (2001). Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media. Phys. Rev. E 63: 035601

    Article  ADS  Google Scholar 

  8. Coffman, C.V.: Uniqueness of the ground state solution for \({-\Delta u + u = u^3}\) and a variational characterization of other solutions. Arch. Rat. Mech. Anal. 46, 81-95 (1972)

    Google Scholar 

  9. de Figueiredo D.G. (2000). Nonlinear elliptic systems. Anais da Academia Brasileira de Ciências 72(4): 453–469

    MathSciNet  Google Scholar 

  10. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\) . Adv. Math. Studies 7A, 209-243 (1979)

  11. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. 2nd edition. Berlin-Heidelberg-Newyork: Springer-Verlag,1983

  12. Hioe F.T. (1999). Solitary waves for N coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 82: 1152–1155

    Article  ADS  Google Scholar 

  13. Kutuzov V., Petnikova V.M., Shuvalov V.V. and Vysloukh V.A. (1998). Cross-modulation coupling of incoherent soliton modes in photorefractive crystals. Phys. Rev. E 57: 6056–6065

    Article  ADS  Google Scholar 

  14. Kwong, M.K.: Uniqueness of positive solutions of \({-\Delta u + u = u^p}\) in \({\mathbb{R}^n}\) . Arch. Rat. Mech. Anal. 105, 243-266 (1989)

  15. Lieb, E., Loss, M.: Analysis. Providence, RI: Amer. Math. Soc. 1996

  16. Lin, T.C., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \({\mathbb{R}^n, N\le 3}\) . Commun. Math. Phys. 255, 629-653 (2005), see also Erratum, to appear in Commun. Math. Phys.

    Google Scholar 

  17. Lin T.C. and Wei J. (2005). Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Anal. Non-Lin. 22(4): 403–439

    Article  MATH  MathSciNet  Google Scholar 

  18. Maia L., Montefusco E. and Pellacci B. (2006). Positive solutions for a weakly coupled Schrödinger system. J. Differ. Eqs. 229: 743–767

    Article  MATH  MathSciNet  Google Scholar 

  19. Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Zh. Eksp. Teor. Fiz. 65, 505–516 (1973), English translation in J. Exp. Th. Phys. 38, 248–256 (1974)

  20. Mitchell M., Chen Z., Shih M. and Segev M. (1996). Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77: 490–493

    Article  ADS  Google Scholar 

  21. Mitchell M. and Segev M. (1997). Self-trapping of incoherent white light. Nature (London) 387: 880–882

    Article  ADS  Google Scholar 

  22. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. CBMS Regional Conference Series in Mathematics 65, Providence, RI:Amer. Math. Soc., 1986

  23. Willem M. (1996). Minimax methods. Springer, Berlin-Heidelberg-Newyork

    Google Scholar 

  24. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1971), English translation in J. Exp. Th. Phys. 34, 62–69 (1972)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boyan Sirakov.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirakov, B. Least Energy Solitary Waves for a System of Nonlinear Schrödinger Equations in \({\mathbb{R}^n}\) . Commun. Math. Phys. 271, 199–221 (2007). https://doi.org/10.1007/s00220-006-0179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0179-x

Keywords

Navigation