Skip to main content

Advertisement

Log in

Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present our numerical-performance studies for 3D wind-turbine rotor aerodynamics computation with the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation. The computation is challenging because of the large Reynolds numbers and rotating turbulent flows, and computing the correct torque requires an accurate and meticulous numerical approach. As the test case, we use the NREL 5MW offshore baseline wind-turbine rotor. We compute the problem with both the original version of the DSD/SST formulation and the version with an advanced turbulence model. The DSD/SST formulation with the turbulence model is a recently-introduced space–time version of the residual-based variational multiscale method. We include in our comparison as reference solution the results obtained with the residual-based variational multiscale Arbitrary Lagrangian–Eulerian method using NURBS for spatial discretization. We test different levels of mesh refinement and different definitions for the stabilization parameter embedded in the “least squares on incompressibility constraint” stabilization. We compare the torque values obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Numer Methods Fluids 65: 207–235. doi:10.1002/fld.2400

    Article  MATH  Google Scholar 

  2. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int J Numer Methods Fluids 65: 236–253

    Article  MATH  Google Scholar 

  3. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  4. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44. doi:10.1016/S0065-2156(08)70153-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351. doi:10.1016/0045-7825(92)90059-S

    Article  MathSciNet  MATH  Google Scholar 

  6. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371. doi:10.1016/0045-7825(92)90060-W

    Article  MathSciNet  MATH  Google Scholar 

  7. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575. doi:10.1002/fld.505

    Article  MathSciNet  MATH  Google Scholar 

  8. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900. doi:10.1002/fld.1430

    Article  MathSciNet  MATH  Google Scholar 

  9. Takizawa K, Tezduyar TE, Multiscale space–time fluid–structure interaction techniques. Comput Mech. doi:10.1007/s00466-011-0571-z, February 2011, doi:10.1007/s00466-011-0571-z

  10. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127: 387–401

    Article  MATH  Google Scholar 

  11. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13: 1784–1799

    Article  Google Scholar 

  12. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  Google Scholar 

  13. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414

    Article  MathSciNet  MATH  Google Scholar 

  14. Takizawa K, Henicke B, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech. doi:10.1007/s00466-011-0589-2, March 2011, doi:10.1007/s00466-011-0589-2

  15. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29: 329–349

    Article  MathSciNet  MATH  Google Scholar 

  16. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26: 27–36. doi:10.1109/2.237441

    Article  Google Scholar 

  17. Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108: 99–118. doi:10.1016/0045-7825(93)90155-Q

    Article  MathSciNet  MATH  Google Scholar 

  18. Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119: 157–177. doi:10.1016/0045-7825(94)00082-4

    Article  MATH  Google Scholar 

  19. Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112: 253–282. doi:10.1016/0045-7825(94)90029-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows—fluid–structure interactions. Int J Numer Methods Fluids 21: 933–953. doi:10.1002/fld.1650211011

    Article  MATH  Google Scholar 

  21. Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21: 783–805. doi:10.1002/fld.1650211003

    Article  MathSciNet  MATH  Google Scholar 

  22. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412. doi:10.1007/BF00350249

    Article  MATH  Google Scholar 

  23. Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321–1340. doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C

  24. Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23: 130–143. doi:10.1007/s004660050393

    Article  MATH  Google Scholar 

  25. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274. doi:10.1016/S0045-7825(98)00299-0

    Article  MATH  Google Scholar 

  26. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Methods Appl Mech Eng 190: 321–332. doi:10.1016/S0045-7825(00)00204-8

    Article  MATH  Google Scholar 

  27. Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid–structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190: 373–386. doi:10.1016/S0045-7825(00)00208-5

    Article  MATH  Google Scholar 

  28. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130. doi:10.1007/BF02897870

    Article  MATH  Google Scholar 

  29. Tezduyar T, Osawa Y (2001) Fluid–structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717–726. doi:10.1016/S0045-7825(01)00311-5

    Google Scholar 

  30. Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid–structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191: 673–687. doi:10.1016/S0045-7825(01)00312-7

    Article  MATH  Google Scholar 

  31. Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190: 3009–3019

    Article  MATH  Google Scholar 

  32. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200. doi:10.1016/S0045-7825(00)00388-1

    Article  MATH  Google Scholar 

  33. Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid–structure interactions with large displacements. J Appl Mech 70: 58–63. doi:10.1115/1.1530635

    Article  MATH  Google Scholar 

  34. Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193: 2019–2032. doi:10.1016/j.cma.2003.12.046

    Article  MATH  Google Scholar 

  35. van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid–structure interaction problem. SIAM J Scientific Comput 27: 599–621

    Article  MathSciNet  MATH  Google Scholar 

  36. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027. doi:10.1016/j.cma.2004.09.014

    Article  MathSciNet  MATH  Google Scholar 

  37. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid– structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753. doi:10.1016/j.cma.2005.08.023

    Article  MathSciNet  MATH  Google Scholar 

  38. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895. doi:10.1016/j.cma.2005.05.050

    Article  MathSciNet  MATH  Google Scholar 

  39. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490. doi:10.1007/s00466-006-0065-6

    Article  MATH  Google Scholar 

  40. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  41. Khurram RA, Masud A (2006) A multiscale/stabilized formulation of the incompressible Navier–Stokes equations for moving boundary flows and fluid–structure interaction. Comput Mech 38: 403–416

    Article  MATH  Google Scholar 

  42. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206. doi:10.1016/j.compfluid.2005.02.011

    Article  MathSciNet  MATH  Google Scholar 

  43. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922. doi:10.1002/fld.1443

    Article  MathSciNet  MATH  Google Scholar 

  44. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168. doi:10.1016/j.compfluid.2005.07.014

    Article  MATH  Google Scholar 

  45. Sawada T, Hisada T (2007) Fluid–structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36: 136–146

    Article  MATH  Google Scholar 

  46. Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free–surface flows and fluid–object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40: 167–183. doi:10.1007/s00466-006-0093-2

    Article  MATH  Google Scholar 

  47. Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54: 1011–1019. doi:10.1002/fld.1466

    Article  MATH  Google Scholar 

  48. Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid–solid and fluid–fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54: 841–853. doi:10.1002/fld.1473

    Article  MathSciNet  MATH  Google Scholar 

  49. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009. doi:10.1002/fld.1497

    Article  MathSciNet  MATH  Google Scholar 

  50. Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43: 73–80. doi:10.1007/s00466-008-0276-0

    Article  MathSciNet  MATH  Google Scholar 

  51. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid– structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49. doi:10.1007/s00466-008-0261-7

    Article  MATH  Google Scholar 

  52. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142. doi:10.1007/s00466-008-0260-8

    Article  MATH  Google Scholar 

  53. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids 57: 601–629. doi:10.1002/fld.1633

    Article  MathSciNet  MATH  Google Scholar 

  54. Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43: 51–60. doi:10.1007/s00466-008-0299-6

    Article  MathSciNet  MATH  Google Scholar 

  55. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43: 151–159. doi:10.1007/s00466-008-0325-8

    Article  MATH  Google Scholar 

  56. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  57. Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39: 3172–3178

    Article  Google Scholar 

  58. Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43: 81–90

    Article  MATH  Google Scholar 

  59. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150

    Article  MathSciNet  MATH  Google Scholar 

  60. Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198: 3524–3533. doi:10.1016/j.cma.2008.05.024

    Article  MathSciNet  MATH  Google Scholar 

  61. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid–structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198: 3613–3621. doi:10.1016/j.cma.2008.08.020

    Article  MathSciNet  MATH  Google Scholar 

  62. Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76: 021204. doi:10.1115/1.3059576

    Article  Google Scholar 

  63. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  64. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  65. Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space–time finite element computation of arterial fluid–structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26: 101–116. doi:10.1002/cnm.1241

    Article  MATH  Google Scholar 

  66. Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46: 31–41. doi:10.1007/s00466-009-0425-0

    Article  MathSciNet  MATH  Google Scholar 

  67. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46: 17–29. doi:10.1007/s00466-009-0423-2

    Article  MathSciNet  MATH  Google Scholar 

  68. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26: 336–347. doi:10.1002/cnm.1289

    Article  MathSciNet  MATH  Google Scholar 

  69. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46: 83–89. doi:10.1007/s00466-009-0426-z

    Article  MATH  Google Scholar 

  70. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms. Comput Mech 46: 43–52. doi:10.1007/s00466-009-0439-7

    Article  MATH  Google Scholar 

  71. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  72. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space–time finite element computation of complex fluid–structure interactions. Int J Numer Methods Fluids 64: 1201–1218. doi:10.1002/fld.2221

    Article  MATH  Google Scholar 

  73. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  74. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416

    Article  Google Scholar 

  75. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65: 271–285. doi:10.1002/fld.2348

    Article  MATH  Google Scholar 

  76. Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65: 308–323. doi:10.1002/fld.2360

    Article  MATH  Google Scholar 

  77. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65: 286–307. doi:10.1002/fld.2359

    Article  MATH  Google Scholar 

  78. Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65: 135–149. doi:10.1002/fld.2415

    Article  MathSciNet  MATH  Google Scholar 

  79. Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. doi:10.1002/cnm.1433

  80. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput. Mech. doi:10.1007/s00466-011-0590-9

  81. Takizawa K, Spielman T, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech (to appear)

  82. Takizawa K, Brummer T, Tezduyar TE, Chen PR (2011) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech (to appear)

  83. Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2011) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech (to appear)

  84. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155: 235–248. doi:10.1016/S0045-7825(97)00194-1

    Article  MATH  Google Scholar 

  85. Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36: 2–11. doi:10.1016/j.compfluid.2005.07.008

    Article  MATH  Google Scholar 

  86. Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (mitict) for flows with fluid–solid and fluid–fluid interfaces. Int J Numer Methods Fluids 54: 1021–1030. doi:10.1002/fld.1498

    Article  MATH  Google Scholar 

  87. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov- Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  88. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity–pressure elements. Comput Methods Appl Mech Eng 95: 221–242. doi:10.1016/0045-7825(92)90141-6

    Article  MATH  Google Scholar 

  89. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59: 307–325. doi:10.1016/0045-7825(86)90003-4

    Article  MATH  Google Scholar 

  90. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430. doi:10.1016/S0045-7825(00)00211-5

    Article  MATH  Google Scholar 

  91. Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70: 2–9. doi:10.1115/1.1526569

    Article  MATH  Google Scholar 

  92. Akin JE, Tezduyar TE (1922) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193: 1909–1922. doi:10.1016/j.cma.2003.12.050

    Article  Google Scholar 

  93. Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21: 465–476. doi:10.1002/cnm.759

    Article  MathSciNet  MATH  Google Scholar 

  94. Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38: 356–364. doi:10.1007/s00466-006-0045-x

    Article  MathSciNet  MATH  Google Scholar 

  95. Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38: 334–343. doi:10.1007/s00466-006-0033-1

    Article  MATH  Google Scholar 

  96. Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36: 121–126. doi:10.1016/j.compfluid.2005.07.004

    Article  MATH  Google Scholar 

  97. Catabriga L, de Souza DAF, Coutinho ALGA, Tezduyar TE (2009) Three-dimensional edge-based SUPG computation of inviscid compressible flows with YZβ shock-capturing. J Appl Mech 76: 021208. doi:10.1115/1.3062968

    Article  Google Scholar 

  98. Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46: 159–167. doi:10.1007/s00466-009-0441-0

    Article  MathSciNet  MATH  Google Scholar 

  99. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840. doi:10.1016/j.cma.2009.06.019

    Article  MathSciNet  MATH  Google Scholar 

  100. Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65: 254–270. doi:10.1002/fld.2451

    Article  MathSciNet  MATH  Google Scholar 

  101. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory (2009)

  102. Spera DA (1994) Introduction to modern wind turbines. In: Spera DA (eds) Wind turbine technology: fundamental concepts of wind turbine engineering. ASME Press, New Jersey, pp 47–72

    Google Scholar 

  103. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Scientific Statist Comput 7: 856–869

    Article  MathSciNet  MATH  Google Scholar 

  104. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Scientific Comput 20: 359–392

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayfun E. Tezduyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takizawa, K., Henicke, B., Montes, D. et al. Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48, 647–657 (2011). https://doi.org/10.1007/s00466-011-0614-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0614-5

Keywords

Navigation