Skip to main content

Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines

  • Chapter
  • First Online:
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

We describe the recent advances made by our teams in ALE-VMS and ST-VMS computational aerodynamic and fluid–structure interaction (FSI) analysis of wind turbines. The ALE-VMS method is the variational multiscale version of the Arbitrary Lagrangian–Eulerian method. The VMS components are from the residual-based VMS method. The ST-VMS method is the VMS version of the Deforming-Spatial-Domain/Stabilized Space–Time method. The ALE-VMS and ST-VMS serve as the core methods in the computations. They are complemented by special methods that include the ALE-VMS versions for stratified flows, sliding interfaces and weak enforcement of Dirichlet boundary conditions, ST Slip Interface (ST-SI) method, NURBS-based isogeometric analysis, ST/NURBS Mesh Update Method (STNMUM), Kirchhoff–Love shell modeling of wind-turbine structures, and full FSI coupling. The VMS feature of the ALE-VMS and ST-VMS addresses the computational challenges associated with the multiscale nature of the unsteady flow, and the moving-mesh feature of the ALE and ST frameworks enables high-resolution computation near the rotor surface. The ST framework, in a general context, provides higher-order accuracy. The ALE-VMS version for sliding interfaces and the ST-SI enable moving-mesh computation of the spinning rotor. The mesh covering the rotor spins with it, and the sliding interface or the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-SI also enables prescribing the fluid velocity at the turbine rotor surface as weakly-enforced Dirichlet boundary condition. The STNMUM enables exact representation of the mesh rotation. The analysis cases reported include both the horizontal-axis and vertical-axis wind turbines, stratified and unstratified flows, standalone wind turbines, wind turbines with tower or support columns, aerodynamic interaction between two wind turbines, and the FSI between the aerodynamics and structural dynamics of wind turbines. Comparisons with experimental data are also included where applicable. The reported cases demonstrate the effectiveness of the ALE-VMS and ST-VMS computational analysis in wind-turbine aerodynamics and FSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. “Renewable power generation costs in 2012: An overview”, Report, International Renewable Energy Agency, 2012, Available at: http://www.irena.org/Publications/.

  2. “Annual energy outlook 2014, doe/eia-0383(2014)”, Report, U.S. Energy Information Administration, April 2014, Available at: http://www.eia.gov/forecasts/aeo/.

  3. “Eu energy in figures, statistical pocketbook 2014”, Report, European Commission, 2014, https://doi.org/10.2833/24150.

  4. “Levelized cost of electricity renewable energy technologies”, Study, FRAUNHOFER INSTITUT FOR SOLAR ENERGY SYSTEMS ISE, November 2013.

    Google Scholar 

  5. N.N. Sørensen, J.A. Michelsen, and S. Schreck, “Navier–Stokes predictions of the NREL Phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel”, Wind Energy, 5 (2002) 151–169.

    Article  Google Scholar 

  6. A.L. Pape and J. Lecanu, “3D Navier–Stokes computations of a stall-regulated wind turbine”, Wind Energy, 7 (2004) 309–324.

    Article  Google Scholar 

  7. F. Zahle, N.N. Sørensen, and J. Johansen, “Wind turbine rotor-tower interaction using an incompressible overset grid method”, Wind Energy, 12 (2009) 594–619.

    Article  Google Scholar 

  8. Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman, and T.E. Tezduyar, “3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics”, International Journal for Numerical Methods in Fluids, 65 (2011) 207–235, https://doi.org/10.1002/fld.2400.

    Article  MATH  Google Scholar 

  9. K. Takizawa, B. Henicke, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 333–344, https://doi.org/10.1007/s00466-011-0589-2.

    Article  MATH  Google Scholar 

  10. Y. Li and P.M.C. Kim-Jong Paik, T. Xing, “Dynamic overset CFD simulations of wind turbine aerodynamics”, Renewable Energy, 37 (2012) 285–298.

    Article  Google Scholar 

  11. E. Guttierez, S. Primi, F. Taucer, P. Caperan, D. Tirelli, J. Mieres, I. Calvo, J. Rodriguez, F. Vallano, G. Galiotis, and D. Mouzakis, “A wind turbine tower design based on fibre-reinforced composites”, Technical report, Joint Research Centre - Ispra, European Laboratory for Structural Assessment (ELSA), Institute For Protection and Security of the Citizen (IPSC), European Commission, 2003.

    Google Scholar 

  12. C. Kong, J. Bang, and Y. Sugiyama, “Structural investigation of composite wind turbine blade considering various load cases and fatigue life”, Energy, 30 (2005) 2101–2114.

    Article  Google Scholar 

  13. M.O.L. Hansen, J.N. Sørensen, S. Voutsinas, N. Sørensen, and H.A. Madsen, “State of the art in wind turbine aerodynamics and aeroelasticity”, Progress in Aerospace Sciences, 42 (2006) 285–330.

    Article  Google Scholar 

  14. F.M. Jensen, B.G. Falzon, J. Ankersen, and H. Stang, “Structural testing and numerical simulation of a 34 m composite wind turbine blade”, Composite Structures, 76 (2006) 52–61.

    Article  Google Scholar 

  15. J. Kiendl, Y. Bazilevs, M.-C. Hsu, R. Wüchner, and K.-U. Bletzinger, “The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 2403–2416.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D.J. Benson, “A computational procedure for pre-bending of wind turbine blades”, International Journal for Numerical Methods in Engineering, 89 (2012) 323–336.

    Article  MATH  Google Scholar 

  17. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner, and K.-U. Bletzinger, “3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades”, International Journal for Numerical Methods in Fluids, 65 (2011) 236–253.

    Article  MATH  Google Scholar 

  18. S. Schreck, J. Lundquist, and W.Shaw, “U.s. department of energy workshop report: Research needs for wind resource characterization”, Technical Report NREL/TP-500-43521, National Renewable Energy Laboratory, 2008.

    Google Scholar 

  19. R. Barthelmie1, S. Frandsen, O. Rathmann, K. Hansen, E. Politis, J. Prospathopoulos, J. Schepers, K. Rados, D. Cabezn, W. Schlez, A. Neubert, and M. Heath, “Flow and wakes in large wind farms: Final report for upwind wp8”, Technical Report Report number Ris-R-1765(EN), Danmarks Tekniske Universitet, Ris Nationallaboratoriet for Bredygtig Energ, 2011.

    Google Scholar 

  20. A. Westerhellweg, B. Caadillas, F. Kinder, and T. Neumann, “Wake measurements at alpha ventus dependency on stability and turbulence intensity”, Journal of Physics: Conference Series (Online), 555 (2014), https://doi.org/10.1088/1742-6596/555/1/012106.

    Google Scholar 

  21. T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement”, Computer Methods in Applied Mechanics and Engineering, 194 (2005) 4135–4195.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.A. Cottrell, A. Reali, Y. Bazilevs, and T.J.R. Hughes, “Isogeometric analysis of structural vibrations”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5257–5297.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Bazilevs, L.B. da Veiga, J.A. Cottrell, T.J.R. Hughes, and G. Sangalli, “Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes”, Mathematical Models and Methods in Applied Sciences, 16 (2006) 1031–1090.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.A. Cottrell, T.J.R. Hughes, and A. Reali, “Studies of refinement and continuity in isogeometric structural analysis”, Computer Methods in Applied Mechanics and Engineering, 196 (2007) 4160–4183.

    Article  MATH  Google Scholar 

  25. W.A. Wall, M.A. Frenzel, and C. Cyron, “Isogeometric structural shape optimization”, Computer Methods in Applied Mechanics and Engineering, 197 (2008) 2976–2988.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester, 2009.

    Book  MATH  Google Scholar 

  27. J.A. Evans, Y. Bazilevs, I. Babus̆ka, and T.J.R. Hughes, “n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 1726–1741.

    Article  MathSciNet  MATH  Google Scholar 

  28. M.R. D\(\ddot {\text{o}}\)rfel, B. J\(\ddot {\text{u}}\)ttler, and B. Simeon, “Adaptive isogeometric analysis by local h-refinement with T-splines”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 264–275.

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W. Sederberg, “Isogeometric analysis using T-splines”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Auricchio, L. Beir\(\tilde {\text{a}}\)o da Veiga, C. Lovadina, and A. Reali, “The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: Mixed FEMs versus NURBS-based approximations”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 314–323.

    Article  MathSciNet  MATH  Google Scholar 

  31. W. Wang and Y. Zhang, “Wavelets-based NURBS simplification and fairing”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 290–300.

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld, “Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 334–356.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Srinivasan, S. Radhakrishnan, and G. Subbarayan, “Coordinated synthesis of hierarchical engineering systems”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 392–404.

    Article  MATH  Google Scholar 

  34. Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi, “Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 173–201.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Weak Dirichlet boundary conditions for wall-bounded turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 196 (2007) 4853–4862.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Bazilevs, C. Michler, V.M. Calo, and T.J.R. Hughes, “Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 780–790.

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Akkerman, Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and S. Hulshoff, “The role of continuity in residual-based variational multiscale modeling of turbulence”, Computational Mechanics, 41 (2008) 371–378.

    Article  MathSciNet  MATH  Google Scholar 

  38. M.-C. Hsu, Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “Improving stability of stabilized and multiscale formulations in flow simulations at small time steps”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 828–840, https://doi.org/10.1016/j.cma.2009.06.019.

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Bazilevs and I. Akkerman, “Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method”, Journal of Computational Physics, 229 (2010) 3402–3414.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Elguedj, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes, “B-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order nurbs elements”, Computer Methods in Applied Mechanics and Engineering, 197 (2008) 2732–2762.

    Article  MATH  Google Scholar 

  41. S. Lipton, J.A. Evans, Y. Bazilevs, T. Elguedj, and T.J.R. Hughes, “Robustness of isogeometric structural discretizations under severe mesh distortion”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 357–373.

    Article  MATH  Google Scholar 

  42. D.J. Benson, Y. Bazilevs, E. De Luycker, M.-C. Hsu, M. Scott, T.J.R. Hughes, and T. Belytschko, “A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM”, International Journal for Numerical Methods in Engineering, 83 (2010) 765–785.

    MathSciNet  MATH  Google Scholar 

  43. D.J. Benson, Y. Bazilevs, M.-C. Hsu, and T.J.R. Hughes, “Isogeometric shell analysis: The Reissner–Mindlin shell”, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 276–289.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner, “Isogeometric shell analysis with Kirchhoff–Love elements”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3902–3914.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Zhang, Y. Bazilevs, S. Goswami, C. Bajaj, and T.J.R. Hughes, “Patient-specific vascular nurbs modeling for isogeometric analysis of blood flow”, Computer Methods in Applied Mechanics and Engineering, 196 (2007) 2943–2959.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes, “Isogeometric fluid–structure interaction analysis with applications to arterial blood flow”, Computational Mechanics, 38 (2006) 310–322.

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang, “Isogeometric fluid–structure interaction: theory, algorithms, and computations”, Computational Mechanics, 43 (2008) 3–37.

    Article  MathSciNet  MATH  Google Scholar 

  48. J.G. Isaksen, Y. Bazilevs, T. Kvamsdal, Y. Zhang, J.H. Kaspersen, K. Waterloo, B. Romner, and T. Ingebrigtsen, “Determination of wall tension in cerebral artery aneurysms by numerical simulation”, Stroke, 39 (2008) 3172–3178.

    Article  Google Scholar 

  49. Y. Bazilevs and T.J.R. Hughes, “NURBS-based isogeometric analysis for the computation of flows about rotating components”, Computational Mechanics, 43 (2008) 143–150.

    Article  MATH  Google Scholar 

  50. F. Cirak, M. Ortiz, and P. Schr\(\ddot {\text{o}}\)der, “Subdivision surfaces: a new paradigm for thin shell analysis”, International Journal for Numerical Methods in Engineering, 47 (2000) 2039–2072.

    Google Scholar 

  51. F. Cirak and M. Ortiz, “Fully C1-conforming subdivision elements for finite deformation thin shell analysis”, International Journal for Numerical Methods in Engineering, 51 (2001) 813–833.

    Article  MATH  Google Scholar 

  52. F. Cirak, M.J. Scott, E.K. Antonsson, M. Ortiz, and P. Schr\(\ddot {\text{o}}\)der, “Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision”, Computer-Aided Design, 34 (2002) 137–148.

    Article  Google Scholar 

  53. T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian–Eulerian finite element formulation for incompressible viscous flows”, Computer Methods in Applied Mechanics and Engineering, 29 (1981) 329–349.

    Article  MathSciNet  MATH  Google Scholar 

  54. T.J.R. Hughes, “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods”, Computer Methods in Applied Mechanics and Engineering, 127 (1995) 387–401.

    Article  MathSciNet  MATH  Google Scholar 

  55. T.J.R. Hughes, A.A. Oberai, and L. Mazzei, “Large eddy simulation of turbulent channel flows by the variational multiscale method”, Physics of Fluids, 13 (2001) 1784–1799.

    Article  MATH  Google Scholar 

  56. Y. Bazilevs and T.J.R. Hughes, “Weak imposition of Dirichlet boundary conditions in fluid mechanics”, Computers and Fluids, 36 (2007) 12–26.

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Nitsche, “Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind”, Abh. Math. Univ. Hamburg, 36 (1971) 9–15.

    Article  MATH  Google Scholar 

  58. D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, “Unified analysis of Discontinuous Galerkin methods for elliptic problems”, SIAM Journal of Numerical Analysis, 39 (2002) 1749–1779.

    Article  MathSciNet  MATH  Google Scholar 

  59. Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S. Gohari, and S. Sarkar, “ALE–VMS formulation for stratified turbulent incompressible flows with applications”, Mathematical Models and Methods in Applied Sciences, 25 (12) (2015) 2349–2375.

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Yan, A. Korobenko, A. Tejada-Martinez, R. Golshan, and Y. Bazilevs, “A new variational multiscale formulation for stratified incompressible turbulent flows”, Computers & Fluids, 158 (2017) 150–156.

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Korobenko, J. Yan, S. Gohari, S. Sarkar, and Y. Bazilevs, “FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow”, Computers & Fluids, 158 (2017) 167–175.

    Article  MathSciNet  MATH  Google Scholar 

  62. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “High-performance computing of wind turbine aerodynamics using isogeometric analysis”, Computers and Fluids, 49 (2011) 93–100.

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Bazilevs, M.-C. Hsu, and M.A. Scott, “Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines”, Computer Methods in Applied Mechanics and Engineering, 249–252 (2012) 28–41.

    Article  MathSciNet  MATH  Google Scholar 

  64. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment”, Wind Energy, 17 (2014) 461–481.

    Article  Google Scholar 

  65. A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann, and Y. Bazilevs, “Structural mechanics modeling and FSI simulation of wind turbines”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 249–272.

    Article  MathSciNet  MATH  Google Scholar 

  66. Y. Bazilevs, K. Takizawa, T.E. Tezduyar, M.-C. Hsu, N. Kostov, and S. McIntyre, “Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods”, Archives of Computational Methods in Engineering, 21 (2014) 359–398, https://doi.org/10.1007/s11831-014-9119-7.

    Article  MathSciNet  MATH  Google Scholar 

  67. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines”, International Journal for Numerical Methods in Engineering, 102 (2015) 766–783, https://doi.org/10.1002/nme.4738.

    Article  MathSciNet  MATH  Google Scholar 

  68. A. Korobenko, M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Aerodynamic simulation of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2013) 021011, https://doi.org/10.1115/1.4024415.

    Article  Google Scholar 

  69. Y. Bazilevs, A. Korobenko, X. Deng, J. Yan, M. Kinzel, and J.O. Dabiri, “FSI modeling of vertical-axis wind turbines”, Journal of Applied Mechanics, 81 (2014) 081006, https://doi.org/10.1115/1.4027466.

    Article  Google Scholar 

  70. J. Yan, A. Korobenko, X. Deng, and Y. Bazilevs, “Computational free-surface fluid–structure interaction with application to floating offshore wind turbines”, Computers and Fluids, 141 (2016) 155–174,

    Article  MathSciNet  MATH  Google Scholar 

  71. Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S.M.I. Gohari, and S. Sarkar, “ALE–VMS formulation for stratified turbulent incompressible flows with applications”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2349–2375, https://doi.org/10.1142/S0218202515400114.

    Article  MathSciNet  MATH  Google Scholar 

  72. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.

    Article  Google Scholar 

  73. Y. Bazilevs, J.R. Gohean, T.J.R. Hughes, R.D. Moser, and Y. Zhang, “Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device”, Computer Methods in Applied Mechanics and Engineering, 198 (2009) 3534–3550.

    Article  MathSciNet  MATH  Google Scholar 

  74. Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran, and A. Marsden, “Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection”, Computational Mechanics, 45 (2009) 77–89.

    Article  MathSciNet  MATH  Google Scholar 

  75. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, “A fully-coupled fluid–structure interaction simulation of cerebral aneurysms”, Computational Mechanics, 46 (2010) 3–16.

    Article  MathSciNet  MATH  Google Scholar 

  76. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, “Computational fluid–structure interaction: Methods and application to cerebral aneurysms”, Biomechanics and Modeling in Mechanobiology, 9 (2010) 481–498.

    Article  Google Scholar 

  77. M.-C. Hsu and Y. Bazilevs, “Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations”, Finite Elements in Analysis and Design, 47 (2011) 593–599.

    Article  MathSciNet  Google Scholar 

  78. C.C. Long, A.L. Marsden, and Y. Bazilevs, “Fluid–structure interaction simulation of pulsatile ventricular assist devices”, Computational Mechanics, 52 (2013) 971–981, https://doi.org/10.1007/s00466-013-0858-3.

    Article  MATH  Google Scholar 

  79. C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, and Y. Bazilevs, “Computation of residence time in the simulation of pulsatile ventricular assist devices”, Computational Mechanics, 54 (2014) 911–919, https://doi.org/10.1007/s00466-013-0931-y.

    Article  MathSciNet  MATH  Google Scholar 

  80. C.C. Long, A.L. Marsden, and Y. Bazilevs, “Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk”, Computational Mechanics, 54 (2014) 921–932, https://doi.org/10.1007/s00466-013-0967-z.

    Article  MathSciNet  MATH  Google Scholar 

  81. M.-C. Hsu, D. Kamensky, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation”, Computational Mechanics, 54 (2014) 1055–1071, https://doi.org/10.1007/s00466-014-1059-4.

    Article  MathSciNet  MATH  Google Scholar 

  82. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M.C.H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M.S. Sacks, “Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models”, Computational Mechanics, 55 (2015) 1211–1225, https://doi.org/10.1007/s00466-015-1166-x.

    Article  MATH  Google Scholar 

  83. D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, and T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 1005–1053.

    Article  MathSciNet  MATH  Google Scholar 

  84. I. Akkerman, Y. Bazilevs, D.J. Benson, M.W. Farthing, and C.E. Kees, “Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics”, Journal of Applied Mechanics, 79 (2012) 010905.

    Article  Google Scholar 

  85. I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks, and Y. Bazilevs, “Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS”, Computational Mechanics, 50 (2012) 719–727.

    Article  Google Scholar 

  86. C. Wang, M.C.H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs, “Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis”, Computers and Fluids, 142 (2017) 3–14, https://doi.org/10.1016/j.compfluid.2015.12.004.

    Article  MathSciNet  MATH  Google Scholar 

  87. M.C.H. Wu, D. Kamensky, C. Wang, A.J. Herrema, F. Xu, M.S. Pigazzini, A. Verma, A.L. Marsden, Y. Bazilevs, and M.-C. Hsu, “Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear”, Computer Methods in Applied Mechanics and Engineering, (2017), Published online. https://doi.org/10.1016/j.cma.2016.09.032.

    Article  MathSciNet  Google Scholar 

  88. J. Yan, X. Deng, A. Korobenko, and Y. Bazilevs, “Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines”, Computers and Fluids, 158 (2017) 157–166, https://doi.org/10.1016/j.compfluid.2016.06.016.

    Article  MathSciNet  MATH  Google Scholar 

  89. B. Augier, J. Yan, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “Experimental and numerical FSI study of compliant hydrofoils”, Computational Mechanics, 55 (2015) 1079–1090, https://doi.org/10.1007/s00466-014-1090-5.

    Article  MATH  Google Scholar 

  90. J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman, and Y. Bazilevs, “FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration”, Computers and Fluids, 141 (2016) 201–211, https://doi.org/10.1016/j.compfluid.2015.07.013.

    Article  MathSciNet  MATH  Google Scholar 

  91. K. Takizawa and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics, 48 (2011) 247–267, https://doi.org/10.1007/s00466-011-0571-z.

    Article  MathSciNet  MATH  Google Scholar 

  92. K. Takizawa and T.E. Tezduyar, “Space–time fluid–structure interaction methods”, Mathematical Models and Methods in Applied Sciences, 22 (supp02) (2012) 1230001, https://doi.org/10.1142/S0218202512300013.

    Article  MathSciNet  MATH  Google Scholar 

  93. K. Takizawa, T.E. Tezduyar, and T. Kuraishi, “Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2227–2255, https://doi.org/10.1142/S0218202515400072.

    Article  MathSciNet  MATH  Google Scholar 

  94. T.E. Tezduyar, “Stabilized finite element formulations for incompressible flow computations”, Advances in Applied Mechanics, 28 (1992) 1–44, https://doi.org/10.1016/S0065-2156(08)70153-4.

    MathSciNet  MATH  Google Scholar 

  95. T.E. Tezduyar, “Computation of moving boundaries and interfaces and stabilization parameters”, International Journal for Numerical Methods in Fluids, 43 (2003) 555–575, https://doi.org/10.1002/fld.505.

    Article  MathSciNet  MATH  Google Scholar 

  96. T.E. Tezduyar and S. Sathe, “Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques”, International Journal for Numerical Methods in Fluids, 54 (2007) 855–900, https://doi.org/10.1002/fld.1430.

    Article  MathSciNet  MATH  Google Scholar 

  97. S. Mittal and T.E. Tezduyar, “A finite element study of incompressible flows past oscillating cylinders and aerofoils”, International Journal for Numerical Methods in Fluids, 15 (1992) 1073–1118, https://doi.org/10.1002/fld.1650150911.

    Article  Google Scholar 

  98. S. Mittal and T.E. Tezduyar, “Parallel finite element simulation of 3D incompressible flows: Fluid-structure interactions”, International Journal for Numerical Methods in Fluids, 21 (1995) 933–953, https://doi.org/10.1002/fld.1650211011.

    Article  MATH  Google Scholar 

  99. V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332, https://doi.org/10.1016/S0045-7825(00)00204-8.

    Article  MATH  Google Scholar 

  100. T.E. Tezduyar, S. Sathe, R. Keedy, and K. Stein, “Space–time finite element techniques for computation of fluid–structure interactions”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 2002–2027, https://doi.org/10.1016/j.cma.2004.09.014.

    Article  MathSciNet  MATH  Google Scholar 

  101. T.E. Tezduyar, S. Sathe, J. Pausewang, M. Schwaab, J. Christopher, and J. Crabtree, “Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods”, Computational Mechanics, 43 (2008) 39–49, https://doi.org/10.1007/s00466-008-0261-7.

    Article  MATH  Google Scholar 

  102. T.E. Tezduyar, S. Sathe, M. Schwaab, J. Pausewang, J. Christopher, and J. Crabtree, “Fluid–structure interaction modeling of ringsail parachutes”, Computational Mechanics, 43 (2008) 133–142, https://doi.org/10.1007/s00466-008-0260-8.

    Article  MATH  Google Scholar 

  103. A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering, 32 (1982) 199–259.

    Article  MathSciNet  MATH  Google Scholar 

  104. K. Takizawa and T.E. Tezduyar, “Computational methods for parachute fluid–structure interactions”, Archives of Computational Methods in Engineering, 19 (2012) 125–169, https://doi.org/10.1007/s11831-012-9070-4.

    Article  MathSciNet  MATH  Google Scholar 

  105. Y. Bazilevs, K. Takizawa, and T.E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications. Wiley, February 2013, ISBN: 978-0470978771.

    Book  MATH  Google Scholar 

  106. K. Takizawa, M. Fritze, D. Montes, T. Spielman, and T.E. Tezduyar, “Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity”, Computational Mechanics, 50 (2012) 835–854, https://doi.org/10.1007/s00466-012-0761-3.

    Article  Google Scholar 

  107. K. Takizawa, T.E. Tezduyar, J. Boben, N. Kostov, C. Boswell, and A. Buscher, “Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity”, Computational Mechanics, 52 (2013) 1351–1364, https://doi.org/10.1007/s00466-013-0880-5.

    Article  MATH  Google Scholar 

  108. K. Takizawa, T.E. Tezduyar, C. Boswell, Y. Tsutsui, and K. Montel, “Special methods for aerodynamic-moment calculations from parachute FSI modeling”, Computational Mechanics, 55 (2015) 1059–1069, https://doi.org/10.1007/s00466-014-1074-5.

    Article  Google Scholar 

  109. K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben, and T.E. Tezduyar, “Methods for FSI modeling of spacecraft parachute dynamics and cover separation”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 307–338, https://doi.org/10.1142/S0218202513400058.

    Article  MathSciNet  MATH  Google Scholar 

  110. K. Takizawa, T.E. Tezduyar, C. Boswell, R. Kolesar, and K. Montel, “FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes”, Computational Mechanics, 54 (2014) 1203–1220, https://doi.org/10.1007/s00466-014-1052-y.

    Article  Google Scholar 

  111. K. Takizawa, T.E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai, and K. Montel, “Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes”, Computational Mechanics, 54 (2014) 1461–1476, https://doi.org/10.1007/s00466-014-1069-2.

    Article  MathSciNet  MATH  Google Scholar 

  112. K. Takizawa, T.E. Tezduyar, and R. Kolesar, “FSI modeling of the Orion spacecraft drogue parachutes”, Computational Mechanics, 55 (2015) 1167–1179, https://doi.org/10.1007/s00466-014-1108-z.

    Article  MATH  Google Scholar 

  113. K. Takizawa, B. Henicke, D. Montes, T.E. Tezduyar, M.-C. Hsu, and Y. Bazilevs, “Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics”, Computational Mechanics, 48 (2011) 647–657, https://doi.org/10.1007/s00466-011-0614-5.

    Article  MATH  Google Scholar 

  114. K. Takizawa, T.E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar, and C. Habluetzel, “Space–time VMS computation of wind-turbine rotor and tower aerodynamics”, Computational Mechanics, 53 (2014) 1–15, https://doi.org/10.1007/s00466-013-0888-x.

    Article  MATH  Google Scholar 

  115. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, M.-C. Hsu, O. Øiseth, K.M. Mathisen, N. Kostov, and S. McIntyre, “Engineering analysis and design with ALE-VMS and space–time methods”, Archives of Computational Methods in Engineering, 21 (2014) 481–508, https://doi.org/10.1007/s11831-014-9113-0.

    Article  MathSciNet  MATH  Google Scholar 

  116. K. Takizawa, “Computational engineering analysis with the new-generation space–time methods”, Computational Mechanics, 54 (2014) 193–211, https://doi.org/10.1007/s00466-014-0999-z.

    Article  MathSciNet  MATH  Google Scholar 

  117. K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406, https://doi.org/10.1142/S0218202515400126.

    Article  MathSciNet  MATH  Google Scholar 

  118. K. Takizawa, B. Henicke, A. Puntel, T. Spielman, and T.E. Tezduyar, “Space–time computational techniques for the aerodynamics of flapping wings”, Journal of Applied Mechanics, 79 (2012) 010903, https://doi.org/10.1115/1.4005073.

    Article  MATH  Google Scholar 

  119. K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust”, Computational Mechanics, 50 (2012) 743–760, https://doi.org/10.1007/s00466-012-0759-x.

    Article  MATH  Google Scholar 

  120. K. Takizawa, B. Henicke, A. Puntel, N. Kostov, and T.E. Tezduyar, “Computer modeling techniques for flapping-wing aerodynamics of a locust”, Computers & Fluids, 85 (2013) 125–134, https://doi.org/10.1016/j.compfluid.2012.11.008.

    Article  MathSciNet  MATH  Google Scholar 

  121. K. Takizawa, N. Kostov, A. Puntel, B. Henicke, and T.E. Tezduyar, “Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle”, Computational Mechanics, 50 (2012) 761–778, https://doi.org/10.1007/s00466-012-0758-y.

    Article  MATH  Google Scholar 

  122. K. Takizawa, T.E. Tezduyar, and N. Kostov, “Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV”, Computational Mechanics, 54 (2014) 213–233, https://doi.org/10.1007/s00466-014-0980-x.

    Article  MathSciNet  MATH  Google Scholar 

  123. K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time interface-tracking with topology change (ST-TC)”, Computational Mechanics, 54 (2014) 955–971, https://doi.org/10.1007/s00466-013-0935-7.

    Article  MathSciNet  MATH  Google Scholar 

  124. K. Takizawa, T.E. Tezduyar, and A. Buscher, “Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping”, Computational Mechanics, 55 (2015) 1131–1141, https://doi.org/10.1007/s00466-014-1095-0.

    Article  Google Scholar 

  125. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, C.C. Long, A.L. Marsden, and K. Schjodt, “ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling”, Mathematical Models and Methods in Applied Sciences, 24 (2014) 2437–2486, https://doi.org/10.1142/S0218202514500250.

    Article  MathSciNet  MATH  Google Scholar 

  126. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent”, Computational Mechanics, 50 (2012) 675–686, https://doi.org/10.1007/s00466-012-0760-4.

    Article  MathSciNet  MATH  Google Scholar 

  127. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov, and T.E. Tezduyar, “Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms”, Computational Mechanics, 51 (2013) 1061–1073, https://doi.org/10.1007/s00466-012-0790-y.

    Article  MathSciNet  MATH  Google Scholar 

  128. H. Suito, K. Takizawa, V.Q.H. Huynh, D. Sze, and T. Ueda, “FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta”, Computational Mechanics, 54 (2014) 1035–1045, https://doi.org/10.1007/s00466-014-1017-1.

    Article  MATH  Google Scholar 

  129. K. Takizawa, T.E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, K. Shiozaki, A. Yoshida, K. Komiya, and G. Inoue, “Aorta flow analysis and heart valve flow and structure analysis”, to appear in a special volume to be published by Springer, 2018.

    Google Scholar 

  130. K. Takizawa, T.E. Tezduyar, A. Buscher, and S. Asada, “Space–time fluid mechanics computation of heart valve models”, Computational Mechanics, 54 (2014) 973–986, https://doi.org/10.1007/s00466-014-1046-9.

    Article  MATH  Google Scholar 

  131. K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA)”, in P. Wriggers and T. Lenarz, editors, Biomedical Technology: Modeling, Experiments and Simulation, Lecture Notes in Applied and Computational Mechanics, 77–99, Springer, 2018, ISBN: 978-3-319-59547-4.

  132. K. Takizawa, T.E. Tezduyar, T. Terahara, and T. Sasaki, “Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods”, Computers & Fluids, 158 (2017) 176–188, https://doi.org/10.1016/j.compfluid.2016.11.012.

    Article  MathSciNet  MATH  Google Scholar 

  133. K. Takizawa, D. Montes, S. McIntyre, and T.E. Tezduyar, “Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers”, Mathematical Models and Methods in Applied Sciences, 23 (2013) 223–248, https://doi.org/10.1142/s0218202513400022.

    Article  MathSciNet  MATH  Google Scholar 

  134. K. Takizawa, T.E. Tezduyar, T. Kuraishi, S. Tabata, and H. Takagi, “Computational thermo-fluid analysis of a disk brake”, Computational Mechanics, 57 (2016) 965–977, https://doi.org/10.1007/s00466-016-1272-4.

    Article  MathSciNet  MATH  Google Scholar 

  135. K. Takizawa, T.E. Tezduyar, and H. Hattori, “Computational analysis of flow-driven string dynamics in turbomachinery”, Computers & Fluids, 142 (2017) 109–117, https://doi.org/10.1016/j.compfluid.2016.02.019.

    Article  MathSciNet  MATH  Google Scholar 

  136. K. Takizawa, T.E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi, and H. Hattori, “Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA)”, Computers & Fluids, 142 (2017) 15–20, https://doi.org/10.1016/j.compfluid.2016.02.021.

    Article  MathSciNet  MATH  Google Scholar 

  137. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method”, Computers & Fluids, 158 (2017) 189–200, https://doi.org/10.1016/j.compfluid.2017.04.017.

    Article  MathSciNet  MATH  Google Scholar 

  138. Y. Otoguro, K. Takizawa, and T.E. Tezduyar, “A general-purpose NURBS mesh generation method for complex geometries”, to appear in a special volume to be published by Springer, 2018.

    Google Scholar 

  139. K. Takizawa, T.E. Tezduyar, S. Asada, and T. Kuraishi, “Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC)”, Computers & Fluids, 141 (2016) 124–134, https://doi.org/10.1016/j.compfluid.2016.05.006.

    Article  MathSciNet  MATH  Google Scholar 

  140. T. Kuraishi, K. Takizawa, and T.E. Tezduyar, “Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation”, to appear in a special volume to be published by Springer, 2018.

    Google Scholar 

  141. K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200, https://doi.org/10.1016/j.compfluid.2016.05.027.

    Article  MathSciNet  MATH  Google Scholar 

  142. K. Takizawa, T.E. Tezduyar, and T. Kanai, “Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity”, Mathematical Models and Methods in Applied Sciences, 27 (2017) 771–806, https://doi.org/10.1142/S0218202517500166.

    Article  MathSciNet  MATH  Google Scholar 

  143. M.-C. Hsu and Y. Bazilevs, “Fluid–structure interaction modeling of wind turbines: simulating the full machine”, Computational Mechanics, 50 (2012) 821–833.

    Article  MATH  Google Scholar 

  144. T.E. Tezduyar, S.K. Aliabadi, M. Behr, and S. Mittal, “Massively parallel finite element simulation of compressible and incompressible flows”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 157–177, https://doi.org/10.1016/0045-7825(94)00082-4.

    Article  MATH  Google Scholar 

  145. K. Takizawa and T.E. Tezduyar, “Space–time computation techniques with continuous representation in time (ST-C)”, Computational Mechanics, 53 (2014) 91–99, https://doi.org/10.1007/s00466-013-0895-y.

    Article  MathSciNet  MATH  Google Scholar 

  146. Y. Osawa, V. Kalro, and T. Tezduyar, “Multi-domain parallel computation of wake flows”, Computer Methods in Applied Mechanics and Engineering, 174 (1999) 371–391, https://doi.org/10.1016/S0045-7825(98)00305-3.

    Article  MATH  Google Scholar 

  147. C. Johnson, Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Sweden, 1987.

    MATH  Google Scholar 

  148. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd ed. Springer, 2002.

    Google Scholar 

  149. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer, 2004.

    Book  MATH  Google Scholar 

  150. T.J.R. Hughes and T.E. Tezduyar, “Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations”, Computer Methods in Applied Mechanics and Engineering, 45 (1984) 217–284, https://doi.org/10.1016/0045-7825(84)90157-9.

    Article  MathSciNet  MATH  Google Scholar 

  151. T.E. Tezduyar and Y.J. Park, “Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 307–325, https://doi.org/10.1016/0045-7825(86)90003-4.

    Article  MATH  Google Scholar 

  152. T.J.R. Hughes, L.P. Franca, and M. Balestra, “A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: A stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  153. T.E. Tezduyar and Y. Osawa, “Finite element stabilization parameters computed from element matrices and vectors”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 411–430, https://doi.org/10.1016/S0045-7825(00)00211-5.

    Article  MATH  Google Scholar 

  154. T.J.R. Hughes, G.R. Feijóo, L. Mazzei, and J.-B. Quincy, “The variational multiscale method–A paradigm for computational mechanics”, Computer Methods in Applied Mechanics and Engineering, 166 (1998) 3–24.

    Article  MathSciNet  MATH  Google Scholar 

  155. T.J.R. Hughes and G. Sangalli, “Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods”, SIAM Journal of Numerical Analysis, 45 (2007) 539–557.

    Article  MathSciNet  MATH  Google Scholar 

  156. F. Shakib, T.J.R. Hughes, and Z. Johan, “A multi-element group preconditionined GMRES algorithm for nonsymmetric systems arising in finite element analysis”, Computer Methods in Applied Mechanics and Engineering, 75 (1989) 415–456.

    Article  MathSciNet  MATH  Google Scholar 

  157. T.J.R. Hughes and M. Mallet, “A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems”, Computer Methods in Applied Mechanics and Engineering, 58 (1986) 305–328.

    Article  MathSciNet  MATH  Google Scholar 

  158. T.J.R. Hughes, G. Scovazzi, and T.E. Tezduyar, “Stabilized methods for compressible flows”, Journal of Scientific Computing, 43 (2010) 343–368, https://doi.org/10.1007/s10915-008-9233-5.

    Article  MathSciNet  MATH  Google Scholar 

  159. B.E. Launder and D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 3 (1974) 269–289.

    Article  MATH  Google Scholar 

  160. D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, La Canada, CA, 1998.

    Google Scholar 

  161. R. Golshan, A. Tejada-Martínez, M. Juha, and Y. Bazilevs, “Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions”, Computers & Fluids, 118 (2015) 172–181.

    Article  MathSciNet  MATH  Google Scholar 

  162. T.E. Tezduyar, S. Sathe, and K. Stein, “Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 5743–5753, https://doi.org/10.1016/j.cma.2005.08.023.

    Article  MathSciNet  MATH  Google Scholar 

  163. T.E. Tezduyar and D.K. Ganjoo, “Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems”, Computer Methods in Applied Mechanics and Engineering, 59 (1986) 49–71, https://doi.org/10.1016/0045-7825(86)90023-X.

    Article  MATH  Google Scholar 

  164. G.J. Le Beau, S.E. Ray, S.K. Aliabadi, and T.E. Tezduyar, “SUPG finite element computation of compressible flows with the entropy and conservation variables formulations”, Computer Methods in Applied Mechanics and Engineering, 104 (1993) 397–422, https://doi.org/10.1016/0045-7825(93)90033-T.

    Article  MATH  Google Scholar 

  165. T.E. Tezduyar, “Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces”, Computers & Fluids, 36 (2007) 191–206, https://doi.org/10.1016/j.compfluid.2005.02.011.

    Article  MathSciNet  MATH  Google Scholar 

  166. T.E. Tezduyar and M. Senga, “Stabilization and shock-capturing parameters in SUPG formulation of compressible flows”, Computer Methods in Applied Mechanics and Engineering, 195 (2006) 1621–1632, https://doi.org/10.1016/j.cma.2005.05.032.

    Article  MathSciNet  MATH  Google Scholar 

  167. T.E. Tezduyar and M. Senga, “SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing”, Computers & Fluids, 36 (2007) 147–159, https://doi.org/10.1016/j.compfluid.2005.07.009.

    Article  MATH  Google Scholar 

  168. T.E. Tezduyar, M. Senga, and D. Vicker, “Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing”, Computational Mechanics, 38 (2006) 469–481, https://doi.org/10.1007/s00466-005-0025-6.

    Article  MATH  Google Scholar 

  169. T.E. Tezduyar and S. Sathe, “Enhanced-discretization selective stabilization procedure (EDSSP)”, Computational Mechanics, 38 (2006) 456–468, https://doi.org/10.1007/s00466-006-0056-7.

    Article  MATH  Google Scholar 

  170. A. Corsini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation”, Computational Mechanics, 38 (2006) 356–364, https://doi.org/10.1007/s00466-006-0045-x.

    Article  MathSciNet  MATH  Google Scholar 

  171. F. Rispoli, A. Corsini, and T.E. Tezduyar, “Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD)”, Computers & Fluids, 36 (2007) 121–126, https://doi.org/10.1016/j.compfluid.2005.07.004.

    Article  MATH  Google Scholar 

  172. T.E. Tezduyar, S. Ramakrishnan, and S. Sathe, “Stabilized formulations for incompressible flows with thermal coupling”, International Journal for Numerical Methods in Fluids, 57 (2008) 1189–1209, https://doi.org/10.1002/fld.1743.

    Article  MathSciNet  MATH  Google Scholar 

  173. F. Rispoli, R. Saavedra, A. Corsini, and T.E. Tezduyar, “Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing”, International Journal for Numerical Methods in Fluids, 54 (2007) 695–706, https://doi.org/10.1002/fld.1447.

    Article  MathSciNet  MATH  Google Scholar 

  174. Y. Bazilevs, V.M. Calo, T.E. Tezduyar, and T.J.R. Hughes, “YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery”, International Journal for Numerical Methods in Fluids, 54 (2007) 593–608, https://doi.org/10.1002/fld.1484.

    Article  MathSciNet  MATH  Google Scholar 

  175. A. Corsini, C. Menichini, F. Rispoli, A. Santoriello, and T.E. Tezduyar, “A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms”, Journal of Applied Mechanics, 76 (2009) 021211, https://doi.org/10.1115/1.3062967.

    Article  Google Scholar 

  176. F. Rispoli, R. Saavedra, F. Menichini, and T.E. Tezduyar, “Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing”, Journal of Applied Mechanics, 76 (2009) 021209, https://doi.org/10.1115/1.3057496.

    Article  Google Scholar 

  177. A. Corsini, C. Iossa, F. Rispoli, and T.E. Tezduyar, “A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors”, Computational Mechanics, 46 (2010) 159–167, https://doi.org/10.1007/s00466-009-0441-0.

    Article  MathSciNet  MATH  Google Scholar 

  178. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Stabilized finite element computation of NOx emission in aero-engine combustors”, International Journal for Numerical Methods in Fluids, 65 (2011) 254–270, https://doi.org/10.1002/fld.2451.

    Article  MathSciNet  MATH  Google Scholar 

  179. A. Corsini, F. Rispoli, and T.E. Tezduyar, “Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique”, Journal of Applied Mechanics, 79 (2012) 010910, https://doi.org/10.1115/1.4005060.

    Article  Google Scholar 

  180. A. Corsini, F. Rispoli, A.G. Sheard, and T.E. Tezduyar, “Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations”, Computational Mechanics, 50 (2012) 695–705, https://doi.org/10.1007/s00466-012-0789-4.

    Article  MathSciNet  MATH  Google Scholar 

  181. P.A. Kler, L.D. Dalcin, R.R. Paz, and T.E. Tezduyar, “SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems”, Computational Mechanics, 51 (2013) 171–185, https://doi.org/10.1007/s00466-012-0712-z.

    Article  MathSciNet  MATH  Google Scholar 

  182. A. Corsini, F. Rispoli, A.G. Sheard, K. Takizawa, T.E. Tezduyar, and P. Venturini, “A variational multiscale method for particle-cloud tracking in turbomachinery flows”, Computational Mechanics, 54 (2014) 1191–1202, https://doi.org/10.1007/s00466-014-1050-0.

    Article  MathSciNet  MATH  Google Scholar 

  183. F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra, and T.E. Tezduyar, “Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing”, Computational Mechanics, 55 (2015) 1201–1209, https://doi.org/10.1007/s00466-015-1160-3.

    Article  MathSciNet  MATH  Google Scholar 

  184. K. Takizawa, T.E. Tezduyar, and Y. Otoguro, “Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations”, Computational Mechanics, published online, https://doi.org/10.1007/s00466-018-1557-x, April 2018.

  185. M.-C. Hsu, I. Akkerman, and Y. Bazilevs, “Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions”, Computational Mechanics, 50 (2012) 499–511.

    Article  MathSciNet  MATH  Google Scholar 

  186. Y. Otoguro, K. Takizawa, T.E. Tezduyar, K. Nagaoka, and S. Mei, “Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis”, Computers & Fluids, submitted, 2018.

    Google Scholar 

  187. S.B. Raknes, X. Deng, Y. Bazilevs, D.J. Benson, K.M. Mathisen, and T. Kvamsdal, “Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells”, Computer Methods in Applied Mechanics and Engineering, 263 (2013) 127–143.

    Article  MathSciNet  MATH  Google Scholar 

  188. L. Piegl and W. Tiller, The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  189. T. Belytschko, W.K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures. Wiley, 2000.

    MATH  Google Scholar 

  190. M. Bischoff, W.A. Wall, K.-U. Bletzinger, and E. Ramm, “Models and finite elements for thin-walled structures”, in E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics, Vol. 2, Solids, Structures and Coupled Problems, Chapter 3, Wiley, 2004.

    Google Scholar 

  191. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed. CRC Press, Boca Raton, FL, 2004.

    Book  Google Scholar 

  192. Y. Guo and M. Ruess, “Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures”, Computer Methods in Applied Mechanics and Engineering, 284 (2015) 881–905.

    Article  MathSciNet  MATH  Google Scholar 

  193. J. Chung and G.M. Hulbert, “A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method”, Journal of Applied Mechanics, 60 (1993) 371–75.

    Article  MathSciNet  MATH  Google Scholar 

  194. H. Melbø and T. Kvamsdal, “Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing”, Computer Methods in Applied Mechanics and Engineering, 192 (2003) 613–633.

    Article  MathSciNet  MATH  Google Scholar 

  195. E.H. van Brummelen, V.V. Garg, S. Prudhomme, and K.G. van der Zee, “Flux evaluation in primal and dual boundary-coupled problems”, Journal of Applied Mechanics, 79 (2011) 010904.

    Article  Google Scholar 

  196. T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Computation of unsteady incompressible flows with the finite element methods: Space–time formulations, iterative strategies and massively parallel implementations”, in New Methods in Transient Analysis, PVP-Vol.246/AMD-Vol.143, ASME, New York, (1992) 7–24.

    Google Scholar 

  197. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal, “Parallel finite-element computation of 3D flows”, Computer, 26 (10) (1993) 27–36, https://doi.org/10.1109/2.237441.

    Article  MATH  Google Scholar 

  198. A.A. Johnson and T.E. Tezduyar, “Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces”, Computer Methods in Applied Mechanics and Engineering, 119 (1994) 73–94, https://doi.org/10.1016/0045-7825(94)00077-8.

    Article  MATH  Google Scholar 

  199. T.E. Tezduyar, “Finite element methods for flow problems with moving boundaries and interfaces”, Archives of Computational Methods in Engineering, 8 (2001) 83–130, https://doi.org/10.1007/BF02897870.

    Article  MATH  Google Scholar 

  200. T. Tezduyar, “Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces”, in Proceedings of the ASME Symposium on Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows (CD-ROM), ASME Paper IMECE2001/HTD-24206, ASME, New York, New York, (2001).

    Google Scholar 

  201. T.E. Tezduyar, “Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows”, in M.M. Hafez, editor, Numerical Simulations of Incompressible Flows, World Scientific, New Jersey, (2003) 221–239, https://doi.org/10.1142/9789812796837_0013.

    Chapter  MATH  Google Scholar 

  202. K. Stein, T.E. Tezduyar, and R. Benney, “Automatic mesh update with the solid-extension mesh moving technique”, Computer Methods in Applied Mechanics and Engineering, 193 (2004) 2019–2032, https://doi.org/10.1016/j.cma.2003.12.046.

    Article  MATH  Google Scholar 

  203. T.E. Tezduyar, S. Sathe, M. Senga, L. Aureli, K. Stein, and B. Griffin, “Finite element modeling of fluid–structure interactions with space–time and advanced mesh update techniques”, in Proceedings of the 10th International Conference on Numerical Methods in Continuum Mechanics (CD-ROM), Zilina, Slovakia, (2005).

    Google Scholar 

  204. T.J.R. Hughes and J. Winget, “Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis”, International Journal for Numerical Methods in Engineering, 15 (1980) 1862–1867.

    Article  MathSciNet  MATH  Google Scholar 

  205. O. Rodrigues, “Des lois geometriques qui regissent les deplacements dun systeme solide dans lespace, et de la variation des coordonnees provenant de ces deplacements consideres independamment des causes qui peuvent les produire”, Journal de Mathematiques, 5 (1840) 380–440.

    Google Scholar 

  206. B. Gayen, S. Sarkar, and J.R. Taylor, “Large eddy simulation of a stratified boundary layer under an oscillatory current”, Journal of Fluid Mechanics, 643 (2010) 233–266.

    Article  MATH  Google Scholar 

  207. B. Gayen and S. Sarkar, “Direct and large-eddy simulations of internal tide generation at a near-critical slope.”, Journal of Fluid Mechanics, 681 (2011) 48–79.

    Article  MathSciNet  MATH  Google Scholar 

  208. R. Beare, M. Macvean, A. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M. Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T. Lund, J. Lundquist, A. Mccabe, A. Moene, Y. Noh, S. Raasch, and P. Sullivan, “An intercomparison of large-eddy simulations of the stable boundary layer”, Boundary-Layer Meteor., 118 (2006) 247–272.

    Article  Google Scholar 

  209. D.T. Griffith and T.D. Ashwill, “The sandia 100-meter all-glass baseline wind turbine blade: Snl100-00”, SANDIA REPORT, SAND2011-3779, (2011).

    Google Scholar 

  210. J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW reference wind turbine for offshore system development”, Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory, 2009.

    Google Scholar 

  211. R. Bravo, S. Tullis, and S. Ziada, “Performance testing of a small vertical-axis wind turbine”, Proceedings of the 21st Canadian Congress of Applied Mechanics, (2007) 470–471.

    Google Scholar 

  212. K. McLaren, S. Tullis, and S. Ziada, “Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine”, Wind Energy, 15 (2012) 349–361, Published online. https://doi.org/10.1002/we.472.

    Article  Google Scholar 

  213. J.O. Dabiri, “Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays”, Journal of Renewable and Sustainable Energy, 3 (2011) 043104.

    Article  Google Scholar 

  214. “Life tower”, http://cosmosunfarm.co.jp/lifetower.html.

  215. Y. Bazilevs, M.-C. Hsu, J. Kiendl, and D.J. Benson, “A computational procedure for prebending of wind turbine blades”, International Journal for Numerical Methods in Engineering, 89 (2012) 323–336.

    Article  MATH  Google Scholar 

  216. “Windspire Energy”, Available at: http://www.windspireenergy.com/.

  217. N. Hill, R. Dominy, G. Ingram, and J. Dominy, “Darrieus turbines: the physics of self-starting”, Proc. IMechE Part A: J. Power and Energy, 223(1) (2009) 21–29.

    Article  Google Scholar 

  218. J.R. Baker, “Features to aid or enable self starting of pitched low solidity vertical axis wind turbines”, J. Wind Eng. Ind. Aerodyn., 15 (1983) 369–380.

    Article  Google Scholar 

  219. Y. Osawa and T. Tezduyar, “A multi-domain method for 3D computation of wake flow behind a circular cylinder”, Computational Fluid Dynamics Journal, 8 (1999) 296–308.

    Google Scholar 

  220. T. Tezduyar and Y. Osawa, “Methods for parallel computation of complex flow problems”, Parallel Computing, 25 (1999) 2039–2066, https://doi.org/10.1016/S0167-8191(99)00080-0.

    Article  MathSciNet  Google Scholar 

  221. T. Tezduyar and Y. Osawa, “The Multi-Domain Method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 705–716, https://doi.org/10.1016/S0045-7825(01)00310-3.

    Article  MATH  Google Scholar 

  222. T. Tezduyar and Y. Osawa, “Fluid–structure interactions of a parachute crossing the far wake of an aircraft”, Computer Methods in Applied Mechanics and Engineering, 191 (2001) 717–726, https://doi.org/10.1016/S0045-7825(01)00311-5.

    Article  MATH  Google Scholar 

  223. M. Jalali, N. Rapaka, and S. Sarkar, “Tidal flow over topography: effect of excursion number on wave energetics and turbulence”, Journal of Fluid Mechanics, 750 (2014) 259–283.

    Article  Google Scholar 

  224. S. Gohari and S. Sarkar, “Tidal flow over topography: effect of excursion number on wave energetics and turbulence”, Boundary-Layer Meteorology, (2016), Accepted for publication.

    Google Scholar 

  225. Y. Bazilevs, A. Korobenko, X. Deng, and J. Yan, “Fluid–structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades”, Journal of Applied Mechanics, 83 (6) (2016) 061010.

    Article  Google Scholar 

Download references

Acknowledgements

First and second authors wish to thank the Texas Advanced Computing Center (TACC) and the San Diego Supercomputing Center (SDSC) for providing HPC resources that have contributed to the research results reported in this paper. The second author acknowledges the support of the AFOSR Award FA9550-16-1-0131 and ARO grant W911NF-14-1-0296. The work on the ST computational analysis was supported (third and fourth authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from Japan Society for the Promotion of Science; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement (third author). The work on the ST computational analysis was also supported (fourth author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem Korobenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korobenko, A., Bazilevs, Y., Takizawa, K., Tezduyar, T.E. (2018). Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_7

Download citation

Publish with us

Policies and ethics