Skip to main content
Log in

On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Partitioned Newton type solution strategies for the strongly coupled system of equations arising in the computational modelling of fluid–solid interaction require the evaluation of various coupling terms. An essential part of all ALE type solution strategies is the fluid mesh motion. In this paper, we investigate the effect of the terms which couple the fluid flow with the fluid mesh motion on the convergence behaviour of the overall solution procedure. We show that the computational efficiency of the simulation of many fluid–solid interaction processes, including fluid flow through flexible pipes, can be increased significantly if some of these coupling terms are calculated exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazilevs Y (2007) private communication

  2. Brooks AN, Hughes TJR (1982) Streamline-upwind/Petrov– Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Meth Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  3. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375

    Article  MATH  MathSciNet  Google Scholar 

  4. Dettmer WG, Perić D (2003) An analysis of the time integration algorithms for the finite element solutions of incompressible Navier–Stokes equations based on a stabilised formulation. Comput Meth Appl Mech Eng 192: 1177–1226

    Article  MATH  Google Scholar 

  5. Dettmer WG, Perić D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Meth Appl Mech Eng 195: 5754–5779

    Article  MATH  Google Scholar 

  6. Dettmer WG, Perić D (2006) A computational framework for fluid–rigid body interaction: finite element formulation and applications. Comput Meth Appl Mech Eng 195: 1633–1666

    Article  MATH  Google Scholar 

  7. Dettmer WG, Perić D (2006) A computational framework for free surface fluid flows accounting for surface tension. Comput Meth Appl Mech Eng 195: 3038–3071

    Article  MATH  Google Scholar 

  8. Dettmer WG, Peric D (2007) A fully implicit computational strategy for strongly coupled fluid–solid interaction. Arch Comput Method Eng 14(3): 205–247

    Article  MATH  MathSciNet  Google Scholar 

  9. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretisation and application to aeroelasticity. Comput Meth Appl Mech Eng 157: 95–114

    Article  MATH  MathSciNet  Google Scholar 

  10. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Meth Appl Mech Eng 190: 3247–3270

    Article  MATH  Google Scholar 

  11. Fernandez MA, Moubachir A (2005) A Newton method using exact Jacobians for solving fluid structure coupling. Comput Struct 83(2–3): 127–142

    Article  Google Scholar 

  12. Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput Meth Appl Mech Eng 193: 1–23

    Article  MATH  MathSciNet  Google Scholar 

  13. Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Meth Appl Mech Eng 73: 173–189

    Article  MATH  MathSciNet  Google Scholar 

  14. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Meth Appl Mech Eng 59: 85–99

    Article  MATH  MathSciNet  Google Scholar 

  15. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized α-method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Meth Appl Mech Eng 190: 305–319

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid–structure interactions in parachute systems. Comput Meth Appl Mech Eng 190: 321–332

    Article  MATH  Google Scholar 

  17. Küttler U, Förster Ch, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid–structure interaction with pure dirichlet fluid domains. Comput Mech 38: 417–429

    Article  Google Scholar 

  18. Matthies HG, Steindorf J (2002) Partitioned but strongly coupled iteration schemes for nonlinear fluid–structure interaction. Comput Struct 80: 1991–1999

    Article  Google Scholar 

  19. Matthies HG, Steindorf J (2003) Partitioned strong coupling algorithms for fluid–structure interaction. Comput Struct 81: 805–812

    Article  Google Scholar 

  20. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Meth Appl Mech Eng 195: 2028–2049

    Article  MATH  MathSciNet  Google Scholar 

  21. Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows–fluid–structure interactions. Int J Numer Method Fluid 21: 933–953

    Article  MATH  Google Scholar 

  22. Pedley TJ, Stephanoff KD (1985) Flow along a channel with a time-dependent indentation in one wall: the generation of vorticity waves. J Fluid Mech 160: 337–367

    Article  Google Scholar 

  23. Robertson I, Sherwin SJ, Bearman PW (2003) A numerical study of rotational and transverse galloping rectangular bodies. J Fluid Struct 17: 681–699

    Article  Google Scholar 

  24. Saksono PH, Dettmer WG, Perić D (2007) An adaptive remeshing strategy for flows with moving boundaries and fluid–structure interaction. Int J Numer Method Eng 71(9): 1009–1050

    Article  Google Scholar 

  25. Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Meth Appl Mech Eng 95: 221–242

    Article  MATH  Google Scholar 

  26. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Method Eng 8: 83–130

    Article  MATH  Google Scholar 

  27. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interaction. Comput Meth Appl Mech Eng 195: 2002–2027

    Article  MATH  MathSciNet  Google Scholar 

  28. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Meth Appl Mech Eng 195: 5743–5753

    Article  MATH  MathSciNet  Google Scholar 

  29. Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36: 191–206

    Article  MathSciNet  Google Scholar 

  30. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with space–time finite elements: solution techniques. Int J Numer Method Fluid 54: 855–900

    Article  MATH  MathSciNet  Google Scholar 

  31. Wall WA (1999) Fluid-struktur interaktion mit stabilisierten finiten elementen. Ph.D. thesis, Universität Stuttgart, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wulf G. Dettmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dettmer, W.G., Perić, D. On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction. Comput Mech 43, 81–90 (2008). https://doi.org/10.1007/s00466-008-0254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0254-6

Keywords

Navigation