Skip to main content
Log in

A nested iterative scheme for computation of incompressible flows in long domains

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present an effective preconditioning technique for solving the nonsymmetric linear systems encountered in computation of incompressible flows in long domains. The application category we focus on is arterial fluid mechanics. These linear systems are solved using a nested iterative scheme with an outer Richardson scheme and an inner iteration that is handled via a Krylov subspace method. Test computations that demonstrate the robustness of our nested scheme are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Series A 70: 1224–1231 (in Japanese)

    Google Scholar 

  2. Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid–structure interaction in blood flow on geometries based on medical images. Comput Struct 83: 155–165

    Article  Google Scholar 

  3. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195: 1885–1895

    Article  MATH  MathSciNet  Google Scholar 

  4. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38: 482–490

    Article  MATH  Google Scholar 

  5. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  6. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36: 160–168

    Article  MATH  Google Scholar 

  7. Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54: 901–922

    Article  MATH  MathSciNet  Google Scholar 

  8. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54: 995–1009

    Article  MATH  MathSciNet  Google Scholar 

  9. Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2007) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Methods Fluids, published online. doi:10.1002/fld.1633

  10. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) A fully-integrated approach to fluid–structure interaction. Comput Mech (in preparation)

  11. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54: 855–900

    Article  MATH  MathSciNet  Google Scholar 

  12. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28: 1–44

    Article  MATH  MathSciNet  Google Scholar 

  13. Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94: 339–351

    Article  MATH  MathSciNet  Google Scholar 

  14. Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  15. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  16. Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th national conference. ACM Press, New York, pp 157–172

  17. Polizzi E, Sameh AH (2006) A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput 32: 177–194

    Article  MathSciNet  Google Scholar 

  18. Dongarra JJ, Sameh AH (1984) On some parallel banded system solvers. Parallel Comput 1: 223–235

    Article  Google Scholar 

  19. Berry MW, Sameh A (1988) Multiprocessor schemes for solving block tridiagonal linear systems. Int J Supercomput Appl 1: 37–57

    Google Scholar 

  20. Kuck DJ, Chen SC, Sameh AH (1978) Practical parallel band triangular system solvers. ACM Trans Math Softw 4: 270–277

    Article  MATH  MathSciNet  Google Scholar 

  21. van der Vorst HA (1992) BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13: 631–644

    Article  MATH  Google Scholar 

  22. Saad Y (1990) SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report 90-20, NASA Ames Research Center, Moffett Field, CA

  23. Schenk O, Gärtner K, Fichtner W, Stricker A (2001) PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Futur Gener Comput Syst 18: 69–78

    Article  MATH  Google Scholar 

  24. Baggag A, Sameh A (2004) A nested iterative scheme for indefinite linear systems in particulate flows. Comp Meth Appl Mech Eng 193: 1923–1957

    Article  MATH  MathSciNet  Google Scholar 

  25. van der Vorst HA, Vuik C (1991) GMRESR: A family of nested GMRES methods. Technical Report DUT-TWI-91-80, Delft, The Netherlands

  26. Simoncini V, Szyld DB (2002) Flexible inner-outer Krylov subspace methods. SIAM J Numer Anal 40: 2219–2239

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Manguoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manguoglu, M., Sameh, A.H., Tezduyar, T.E. et al. A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43, 73–80 (2008). https://doi.org/10.1007/s00466-008-0276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0276-0

Keywords

Navigation