Skip to main content
Log in

Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present, for the SUPG formulation of inviscid compressible flows, stabilization parameters defined based on the degree-of-freedom submatrices of the element-level matrices. With 2D steady-state test problems involving supersonic flows and shocks, we compare these stabilization parameters with the ones defined based on the full element-level matrices. We also compare them to the stabilization parameters introduced in the earlier development stages of the SUPG formulation of compressible flows. In all cases the formulation includes a shock-capturing term involving a shock-capturing parameter. We investigate the difference between updating the stabilization and shock-capturing parameters at the end of every time step and at the end of every nonlinear iteration within a time step. The formulation includes, as an option, an algorithmic feature that is based on freezing the shock-capturing parameter at its current value when a convergence stagnation is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  2. Catabriga L, Coutinho ALGA (2002a) Implicit SUPG solution of Euler equations using edge-based data structures. Comput Methods Appl Mech Eng 191:3477–3490

    Article  MATH  MathSciNet  Google Scholar 

  3. Catabriga L, Coutinho ALGA (2002b) Improving convergence to steady-state of implicit-SUPG solution of Euler equations. Commun Numer Methods Eng 18:345–353

    Article  MATH  MathSciNet  Google Scholar 

  4. Catabriga L, Coutinho ALGA, Tezduyar TE (2002) Finite element SUPG parameters computed from local matrices for compressible flows. In: Proceedings of the 9th Brazilian congress of engineering and thermal sciences. Caxambu, Brazil

  5. Catabriga L, Coutinho ALGA, Tezduyar TE (2003a) Finite element SUPG parameters computed from local dof-matrices for compressible flows. In: Proceedings of the 24th Iberian Latin-American congress on computational methods in engineering. Ouro Preto, Brazil

  6. Catabriga L, Coutinho ALGA, Tezduyar TE (2003b) Finite element SUPG parameters computed from local edge matrices for compressible flows. In: Proceedings of the 17th international congress of mechanical engineering. Sao Paulo, Brazil

  7. Catabriga L, Coutinho ALGA, Tezduyar TE (2004) Compressible flow SUPG stabilization parameters computed from element-edge matrices. Comput Fluid Dyn J 13:450–459

    Google Scholar 

  8. Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465–476

    Article  MATH  MathSciNet  Google Scholar 

  9. Donea J (1984) A Taylor–Galerkin method for convective transport problems. Int J Numer Methods Eng 20:101–120

    Article  MATH  Google Scholar 

  10. Hughes TJR, Brooks AN (1979). A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (eds). finite element methods for convection dominated flows, AMD-vol 34, ASME, New York, pp 19–35

    Google Scholar 

  11. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217–284

    Article  MATH  MathSciNet  Google Scholar 

  12. Hughes TJR, Franca LP, Mallet M (1987) A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems. Comput Methods Appl Mech Eng 63:97–112

    Article  MATH  MathSciNet  Google Scholar 

  13. Johnson C, Navert U, Pitkäranta J (1984) Finite element methods for linear hyperbolic problems. Comput Methods Appl Mech Eng 45:285–312

    Article  MATH  Google Scholar 

  14. Le Beau GJ, Tezduyar TE (1991) Finite element computation of compressible flows with the SUPG formulation. In: Advances in finite element analysis in fluid dynamics, FED-vol. 123. ASME, New York, pp 21–27

  15. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MATH  MathSciNet  Google Scholar 

  16. Tezduyar TE (2001) Adaptive determination of the finite element stabilization parameters. In: Proceedings of the ECCOMAS computational fluid dynamics conference 2001 (CD-ROM). Swansea, Wales

  17. Tezduyar TE (2002) Calculation of the stabilization parameters in SUPG and PSPG formulations. In: Proceedings of the 1st South-American congress on computational mechanics (CD-ROM). Santa Fe–Parana, Argentina

  18. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    Article  MATH  MathSciNet  Google Scholar 

  19. Tezduyar TE, Hughes TJR (1982) Development of time-accurate finite element techniques for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. NASA Technical Report NASA-CR-204772, NASA. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970023187_19970349 54.pdf

  20. Tezduyar TE, Hughes TJR (1983) Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations. In: Proceedings of AIAA 21st aerospace sciences meeting. AIAA Paper 83-0125, Reno, Nevada

  21. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430

    Article  MATH  Google Scholar 

  22. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307–325

    Article  MATH  Google Scholar 

  23. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro L. G. A. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catabriga, L., Coutinho, A.L.G.A. & Tezduyar, T.E. Compressible Flow SUPG Stabilization Parameters Computed from Degree-of-freedom Submatrices. Comput Mech 38, 334–343 (2006). https://doi.org/10.1007/s00466-006-0033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0033-1

Keywords

Navigation