Skip to main content
Log in

NURBS-based isogeometric analysis for the computation of flows about rotating components

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The ability of non-uniform rational B-splines (NURBS) to exactly represent circular geometries makes NURBS-based isogeometric analysis attractive for applications involving flows around and/or induced by rotating components (e.g., submarine and surface ship propellers). The advantage over standard finite element discretizations is that rotating components may be introduced into a stationary flow domain without geometric incompatibility. Although geometric compatibility is exactly achieved, the discretization of the flow velocity and pressure remains incompatible at the interface between the stationary and rotating subdomains. This incompatibility is handled by using a weak enforcement of the continuity of solution fields at the interface of the stationary and rotating subdomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkerman I, Bazilevs Y, Calo VM, Hughes TJR, Hulshoff S (2008) The role of continuity in residual-based variational multiscale modeling of turbulence. Comput Mech 41: 371–378

    Article  MathSciNet  Google Scholar 

  2. Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of Discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39: 1749–1779

    Article  MATH  MathSciNet  Google Scholar 

  3. Barenblatt GI (1979) Similarity, self-similarity, and intermediate assymptotics. Consultants Bureau, Plenum Press, New York and London

    Google Scholar 

  4. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  Google Scholar 

  5. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MathSciNet  Google Scholar 

  6. Bazilevs Y, Beirao da Veiga L, Cottrell JA, Hughes TJR, Sangalli G (2006) Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math Models Methods Appl Sci 16: 1031–1090

    Article  MATH  MathSciNet  Google Scholar 

  7. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26

    Article  MATH  MathSciNet  Google Scholar 

  8. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196: 4853–4862

    Article  MathSciNet  Google Scholar 

  9. Behr M, Tezduyar T (1999) Shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274

    Article  MATH  Google Scholar 

  10. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200

    Article  MATH  Google Scholar 

  11. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MATH  MathSciNet  Google Scholar 

  12. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–75

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohen E, Riesenfeld R, Elber G (2001) Geometric modeling with splines: an introduction. A. K. Peters Ltd, Wellesley

    MATH  Google Scholar 

  14. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195: 5257–5297

    Article  MATH  MathSciNet  Google Scholar 

  15. Ern A, Guermond J-L (2004) Theory and practice of finite elements. Springer, Berlin

    MATH  Google Scholar 

  16. Farin GE (1995) NURBS curves and surfaces: from projective geometry to practical use. A. K. Peters, Ltd, Natick

    Google Scholar 

  17. Hansbo P, Hermansson J (2003) Nitsche’s method for coupling non-matching meshes in fluid–structure vibration problems. Comput Mech 32: 134–139

    Article  MATH  Google Scholar 

  18. Hansbo P, Hermansson J, Svedberg T (2004) Nitsche’s method combined with space-time finite elements for ALE fluid–structure interaction problems. Comput Methods Appl Mech Eng 193: 4195–4206

    Article  MATH  MathSciNet  Google Scholar 

  19. Houzeaux G, Codina R (2003) A chimera method based on a Dirichlet/Neumann (Robin) coupling for the Navier–Stokes equations. Comput Methods Appl Mech Eng 192: 3343–3377

    Article  MATH  MathSciNet  Google Scholar 

  20. Hughes TJR, Feijóo G, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166: 3–24

    Article  MATH  Google Scholar 

  21. Hughes TJR, Mallet M (1986) A new finite element formulation for fluid dynamics. III. The generalized streamline operator for multidimensional advective–diffusive systems. Comput Methods Appl Mech Eng 58: 305–328

    Article  MATH  MathSciNet  Google Scholar 

  22. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MATH  MathSciNet  Google Scholar 

  23. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45: 539–557

    Article  MATH  MathSciNet  Google Scholar 

  24. Jansen KE, Whiting CH, Hulbert GM (1999) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319

    Article  MathSciNet  Google Scholar 

  25. Piegl L, Tiller W (1997) The NURBS book (Monographs in visual communication), 2nd edn. Springer, New York

    Google Scholar 

  26. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, San Diego

    Google Scholar 

  27. Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89: 141–219

    Article  MathSciNet  Google Scholar 

  28. Texas Advanced Computing Center (TACC). http://www.tacc.utexas.edu

  29. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412

    Article  MATH  Google Scholar 

  30. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43: 555–575

    Article  MATH  MathSciNet  Google Scholar 

  31. Wheeler MF (1978) An elliptic collocation—finite element method with interior penalties. SIAM J Numer Anal 15: 152–161

    Article  MATH  MathSciNet  Google Scholar 

  32. Wriggers P, Zavarise G (2008) A formulation for frictionless contact problems using a weak form introduced by Nitsche. Comput Mech 41: 407–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bazilevs.

Additional information

noli turbare circulos meos, “do not upset my circles (calculations)”, attributed to Archimedis, to a roman soldier who killed him, and was subsequently executed because he violated orders not to kill Archimedis, at the battle of Syracuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazilevs, Y., Hughes, T.J.R. NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43, 143–150 (2008). https://doi.org/10.1007/s00466-008-0277-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0277-z

Keywords

Navigation