Skip to main content
Log in

Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

This article presents a comprehensive review on the success and limitations of biotechnological approaches aimed at genetic improvement of tea with a purpose to explore possibilities to address challenging areas.

Abstract

Tea is a woody perennial tree with a life span of more than 100 years. Conventional breeding of tea is slow and limited primarily to selection which leads to narrowing down of its genetic base. Harnessing the benefits of wild relatives has been negligible due to low cross-compatibility, genetic drag and undesirable alleles for low yield. Additionally, being a recalcitrant species, in vitro propagation of tea is constrained too. Nevertheless, maneuvering with tissue/cell culture techniques, a considerable success has been achieved in the area of micropropagation, somatic embryogenesis as well as genetic transformation. Besides, use of molecular markers, “expressomics” (transcriptomics, proteomics, metabolomics), map-based cloning towards construction of physical maps, generation of expressed sequenced tags (ESTs) have facilitated the identification of QTLs and discovery of genes associated with abiotic or biotic stress tolerance and agronomic traits. Furthermore, the complete genome (or at least gene space) sequence of tea is expected to be accessible in the near future which will strengthen combinational approaches for improvement of tea. This review presents a comprehensive account of the success and limitations of the biotechnological tools and techniques hitherto applied to tea and its wild relatives. Expectedly, this will form a basis for making further advances aimed at genetic improvement of tea in particular and of economically important woody perennials in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham GC, Raman K (1986) Somatic embryogenesis in tissue culture of immature cotyledons of tea (Camellia sinensis). In: Somers DA, Gengenbach BG, Biesboor DD, Hackett WP, Green CE (eds) Proceedings of 6th international congress on plant tissue and cell culture. Univ Minnesota, Minneapolis, p 294

    Google Scholar 

  • Afridi SG, Ahmad H, Alam M, Khan IA, Hassan M (2011) DNA landmarks for genetic diversity assessment in tea genotypes using RAPD markers. Afr J Biotech 10:15477–15482

    Article  CAS  Google Scholar 

  • Akula A, Akula C (1999) Somatic embryogenesis in tea (Camellia sinensis (L) O Kuntze. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants, vol 5. Kluwer Academic Publishers, The Great Britain, pp 239–259

    Chapter  Google Scholar 

  • Akula A, Dodd WA (1998) Direct somatic embryogenesis in a selected tea clone, ‘TRI-2025’ (Camellia sinensis (L). O. Kuntze) from nodal segment. Plant Cell Rep 17:804–809

    Article  CAS  Google Scholar 

  • Akula A, Akula C, Bateson M (2000) Betaine, a novel candidate for rapid induction of somatic embryogenesis in tea (Camelia sinensis (L.) O.Kuntze). Plant Growth Regul 30:241–246

    Article  CAS  Google Scholar 

  • Anesini C, Ferraro GE, Filip R (2008) Total polyphenol content and antioxidant capacity of commercially available tea (camellia sinensis) in Argentina. J Agric Food Chem 56:9225–9229

    Article  CAS  PubMed  Google Scholar 

  • Ariyaratne PNK, Mewan KM, Goonetilleke WASNST, Attanayake DPSTG (2009) Study of genetic relationships of tea (Camellia sinensis (L.) O. Kuntze) using SSR markers and pedigree analysis. In: Proceedings of 9th Agricultural Research Symposium, Wayamba Univ, Sri Lanka 1:293–298

  • Arulpragasam PV, Latiff R, Seneviratne P (1988) Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze). 3. Regeneration of plants from cotyledon callus. Sri Lanka J Tea Sci 57:20–23

    Google Scholar 

  • Bag N, Palni LMS, Nandi SK (1997) Mass propagation of tea using tissue culture methods. Physiol Mol Biol Plants 3:99–103

    Google Scholar 

  • Bagratishvili DG, Zaprometov MN, Butenko RG (1979) Obtaining a cell suspension culture from the tea plant. Fiziol Rast 26:449–451

    CAS  Google Scholar 

  • Balasaravanan T, Pius PK, Kumar RR (2002) Assessment of genetic fidelity among the in vitro propagated culture lines of Camellia sinensis (L.) O Kuntze using RAPD markers. In: Proc 15th Plantation Crops Symp PLACROSYM XV, Mysore, India Dec 10–13, pp 181–184

  • Balasaravanan T, Pius PK, Kumar RR, Muraleedharan N, Shasany AK (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. Lasiocalyx) using AFLP markers. Plant Sci 165:365–372

    Article  CAS  Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R, Balasaravanan T (2000a) Isolation, culture and fusion of protoplast in tea. In: Muraleedharan N, Rajkumar R (eds) Recent advances in plants crops research. Allied Publishers Ltd, India, pp 3–9

    Google Scholar 

  • Balasubramanian S, Marimuthu S, Rajkumar R, Haridas V (2000b) Somatic embryogenesis and multiple shoot induction in Camellia sinensis (L.) O. Kuntze. J Plant Crops 28:44–49

    Google Scholar 

  • Bali S, Raina SN, Bhat V, Aggarwal RK, Goel S (2013) Development of a set of genomic microsatellite markers in tea (Camellia L.) (Camelliaceae). Mol Breed 32:735–741

    Article  CAS  Google Scholar 

  • Bali S, Mamgain A, Raina SN, Yadava SK, Bhat V, Das S, Pradhan AK, Goel S (2015) Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea. Mol Breed 35:112–132. doi:10.1007/s11032-015-0306-5

    Article  CAS  Google Scholar 

  • Banerjee B (1992) Selection and breeding of tea. In: Willson KC, Clifford MN (eds) Tea: cultivation to consumption. Chapman and Hall, London, pp 26–86

    Google Scholar 

  • Bano Z, Rajaratnam S, Mohanty BD (1991) Somatic embryogenesis in cotyledon culture of tea (Thea sinensis L.) J Hort Sci 66:465–470

  • Barciela J, Vieitz AM (1993) Anatomical sequence and morphometric analysis during somatic embryogenesis on cultured cotyledon explants of Camellia japonica L. Ann Bot 71:395–404

    Article  Google Scholar 

  • Barua PK (1963) Classification of tea plant. Two Bud 10:3–11

    Google Scholar 

  • Basak M, Sharma M, Chakraborty U (2001) Biochemical responses of Camellia sinensis (L) O. Kuntze to heavy metal stress. J Environ Biol 22:37–41

    CAS  PubMed  Google Scholar 

  • Bennett WY, Scheibert P (1982) In vitro generation of callus and plantlets from cotyledons of Camellia japonica. Camellia J 37:12–15

    Google Scholar 

  • Bera B, Saikia H (2002) Randonmly amplified polymorphic DNA (RAPD) marker analysis in tea (Camellia sinensis L) generative clones. In: Proceedings of the 15th Plantation Crops Symposium PLACROSYM XV Mysore, India Dec 10–13, pp 235–238

  • Bezbaruah HP (1971) Cytological investigation in the family Theaceae. 1. Chromosome numbers in some Camellia species and allied genera. Caryolgia 24:421–426

    Article  Google Scholar 

  • Bhardwaj P, Kumar R, Sharma H, Tewari R, Ahuja PS, Sharma RK (2013) Development and utilization of genomic and genic microsatellite markers in Assam tea (Camellia assamica ssp. assamica) and related Camellia species. Plant Breed 132:748–763

    Article  CAS  Google Scholar 

  • Bidarigh S, Azarpour E (2011) The study effect of cytokinin hormone types on length shoot in vitro culture of tea (Camellia sinensis L.). World Appl Sci J 13:1726–1729

    Google Scholar 

  • Borchetia S, Das SC, Handique PJ, Das S (2009) High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp.). Sci Hort 120:544–550

    Article  CAS  Google Scholar 

  • Borchetia S, Bora C, Gohain B, Bhagawati P, Agarwala N, Bhattacharya N, Bharalee R, Bhorali P, Bandyopadhyay T, Gupta S, Das SK, Singh HR, Ahmed P, Gogoi M, Das S (2011) Cloning and heterologous expression of a gene encoding lycopene-epsilon-cyclase, a precursor of lutein in tea (Camellia sinensis var assamica). Afr J Biotechnol 10:5934–5939

    CAS  Google Scholar 

  • Borthakur S, Mondal TK, Borthakur A, Deka PC (1995) Variation in peroxidase and esterase isoenzymes in tea leaves. Two Bud 42:20–23

    Google Scholar 

  • Borthakur S, Mondal TK, Parveen SS, Guha A, Sen P, Borthakur A, Deka PC (1998) Isolation of chloroplast DNA from tea, Camellia sp. Ind J Exp Biol 36:1165–1167

    CAS  Google Scholar 

  • Borthakur D, Du YY, Chen H, Lu JL, Lin C, Dong JJ, Ye JH, Zheng XQ, Liang YR (2008) Cloning and characterization of a cDNA encoding phytoene synthase (PSY) in tea. Afr J Biotechnol 7:577–3581

    Google Scholar 

  • Caser M, Marinoni TD, Scariot V (2010) Microsatellite-based genetic relationships in the genus Camellia: potential for improving cultivars. Genome 53:384–399

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty U, Dutta S, Chakraborty BN (2002) Response of tea plants to water stress. Biol Plant 45:557–562

    Article  CAS  Google Scholar 

  • Chen Z, Liao H (1982) Obtaining plantlet through anther culture of tea plants. Zhongguo Chaye 4:6–7

    CAS  Google Scholar 

  • Chen L, Yamaguchi L (2002) Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. J Hort Sci Bio 77:729–732

    CAS  Google Scholar 

  • Chen L, Yamaguchi S (2005) RAPD markers for discriminating tea germplasms at the inter-specific level in China. Plant Breed 124:404–409

    Article  CAS  Google Scholar 

  • Chen L, Chen D, Gao Q, Yang Y, Yu F (1997a) Isolation and appraisal of genomic DNA from tea plant (Camellia sinensis (L.) O. Kuntze). J Tea Sci 17:177–181

    CAS  Google Scholar 

  • Chen L, Qiqing T, Qikang G, Jilin S, Fulian Y (1997b) Observation on pollen morphology of 8 species and 1 variety in genus Camellia. J Tea Sci 17:183–188

    Google Scholar 

  • Chen L, Gao Q, Yang Y, Yu F, Chen D (1998a) Optimum amplification procedure and reaction system for RAPD analysis of tea plant (Cameliia sinensis (L.) O. Kuntze). J Tea Sci 18:16–20

    Google Scholar 

  • Chen L, Yang Y, Yu F, Gao Q, Chen D (1998b) Genetic diversity of 15 tea (Camellia sisnensis (L.) O.Kuntze) cultivars using RAPD markers. J Tea Sci 18:21–27

    Google Scholar 

  • Chen L, Yu F, Yang Y, Gao Q, Chen D, Xu C (1999) A study on genetic stability of excellent germplasm (Camellia sisnensis (L.) O. Kuntze) using RAPD markers. J Tea Sci 19:13–16

    CAS  Google Scholar 

  • Chen L, Wang PS, Yamaguchi S (2002a) Discrimination of wild tea germplasm resources (Camellia sp.) using RAPD markers. Agri Sci China 1:1105–1110

    Google Scholar 

  • Chen L, Yamaghuchi S, Wang PS, Xu M, Song WX, Tong QQ (2002b) Genetic polymorphism and molecular phylogeny analysis of section Thea Based on RAPD markers. J Tea Sci 22:19–24

    Google Scholar 

  • Chen L, Gao QK, Chen DM, Xu CJ (2005a) The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in a tea germplasm repository. Biodiver Conser 14:1433–1444

    Article  Google Scholar 

  • Chen L, Zhao LP, Gao QK (2005b) Generation and analysis of expressed sequence tags from the tender shoots cDNA library of tea plant (Camellia sinensis). Plant Sci 168:359–363

    Article  CAS  Google Scholar 

  • Chen X, Fang WP, Zou Z, Wang YH, Cheng H, Li XH (2009) Cloning and expression analysis of CBF gene in cold induced tea plant [Camellia sinensis (L.) O. Kuntze]. J Tea Sci 29:53–59

    Google Scholar 

  • Chen L, Li Y, Wang Q, Gao Y, Jiang C (2010) Cloning and expression analysis of RAV gene related to cold stress from tea plant [Camellia sinensis (L.) O. Kuntz]. Plant Physiol S571:1

    Google Scholar 

  • Chenery EM (1955) A preliminary study of aluminium and the tea bush. Plant Soil 6:174–200

    Article  CAS  Google Scholar 

  • Choi JY, Mizutani M, Shimizu BI, Kinoshita T, Ogura M, Tokoro K, Lin ML, Sakata K (2007) Chemical profiling and gene expression profiling during manufacturing process of Taiwan oolong tea, “Oriental Beauty”. Bios Biotech Biochem 71:1476–1486

    Article  CAS  Google Scholar 

  • Damasco OP, Godwin ID, Smith MK, Adkins SW (1996) Gibberellic acid detection of dwarf off-types in micropropagated Cavendish bananas. Aus J Expt Agric 36:237–241

    Article  Google Scholar 

  • Das SC, Barman TS (1988) Current state and future potential of tissue culture in tea. Proc. 30th Tocklai Conf. TRA, Jorhat, India, pp 90–94

  • Das A, Mondal TK (2010) In silico analysis of miRNA and their targets in tea. Amer J Plant Sci 1:77–86

    Article  CAS  Google Scholar 

  • Das A, Das S, Mondal TK (2012) Identification of differentially expressed gene profiles in young roots of tea [Camellia sinensis (L.) O. Kuntze] subjected to drought stress using suppression subtractive hybridization. Plant Mol Biol Rep 30:1088–1101

    Article  CAS  Google Scholar 

  • Das A, Saha D, Mondal TK (2013) An optimized method for extraction of RNA from tea roots for functional genomics analyses. Indian J Biotech 12:129–132

    CAS  Google Scholar 

  • Deka A, Deka PC, Mondal TK (2005) Tea. In: Parthasarathy VA, Chattopadhyay PK, Bose TK (eds) Plantation crops I. Naya Udyog, India, pp 1–148

    Google Scholar 

  • Deng W, Li YY, Ogita S, Ashihara H (2008) Fine control of caffeine biosynthesis in tissue cultures of Camellia sinensis. Phytochem Lett 1:195–198

    Article  CAS  Google Scholar 

  • Deng W, Wang S, Chen Q, Zhang Z, Hu X (2012) Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Physiol Biotech 56:35–40

    Article  CAS  Google Scholar 

  • Devi AM, Goel S, Misra AK (2015) Generation of silver stained TE-AFLP markers in tea (Camellia sinensis) and their assessment in filling gaps with construction of a genetic linkage map. Sci Hort 192:293–301

  • Dhiman B, Singh M (2003) Molecular detection of cashew husk (Anacardium occidentale) adulteration in market samples of dry tea (Camellia sinensis). Planta Med 69:882–884

    Article  CAS  PubMed  Google Scholar 

  • Dood AW (1994) Tissue culture of tea (Camellia sinensis (L.) O. Kuntze)- A review. Inter J Trop Agric 12:212–247

    Google Scholar 

  • Eungwanichayapant PD, Popluechai S (2009) Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiol Biotech 47:94–97

    Article  CAS  Google Scholar 

  • Fan K, Hong Y-C, Ding Z-T, Wang Y (2010) Analysis of genetic diversity among natural hybrid progenies of Camellia sinensis‘Huangshanzhong’. Acta Hort Sinica 37:1357–1362

    CAS  Google Scholar 

  • Fang SW, Hua PR, Sheng WP, Mei X, Xing DH, Ping ZY, Hua LJ, Shao WF, Pang RH, Wang PS, Xu M, Duan HX, Zhang YP, Li JH (2003) RAPD analysis of tea trees in Yunnan. Sci Agrire Sinica 36:1582–1587

    Google Scholar 

  • Fang WP, Jiang CJ, Yu M, Ye AH, Wan ZX (2006) Differentially expression of Tua 1, a tubulin encoding gene, during flowering of tea plant Camellia sinensis (L.) O. Kuntze using cDNA amplified fragment length polymorphism technique. Acta Biochim Biophys Sin (Shanghai) 38:653–662

    Article  CAS  Google Scholar 

  • Fang W, Zou Z, Hou X, Zhang D, Duan Y, Yang Y, Li X (2009) Cloning and sequence analysis of cold-induced H1-histone gene from Camellia sinensis. Acta Botanica Boreali-Occidentalia Sin 8:1514–1519

    Google Scholar 

  • Fang W, Cheng H, Duan Y, Jiang X, Li X (2012) Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant System Evol 298:469–483

    Article  Google Scholar 

  • Fang WP, Meinhardt LW, Tan HW, Zhou L, Mischke S, Zhang D (2014) Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hort Res 1:14035. doi:10.1038/hortres.2014.35

  • Feng YF, Liang YR (2001) Cloning and sequencing of S-adenosylmethionine synthetase gene in tea plant. J Tea Sci 21:21–25

    CAS  Google Scholar 

  • Forrest GI (1969) Studies on the polyphenol metabolism of tissue culture derived from the tea plant (C. sinensis L.). Biochem J 113:765–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman SJ, West CJ, Lea V, Mayes S (2004) Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Mol Ecol Notes 4:324–326

    Article  CAS  Google Scholar 

  • Fu J (2013) Molecular cloning and expression analysis of a putative sesquiterpene synthase gene from tea plant (Camellia sinensis). Acta Physiol Plant 35:289–293

    Article  CAS  Google Scholar 

  • Fujimura Y, Kurihara K, Ida M, Kosaka R, Miura D, Wariishi H, Maeda-Yamamoto M, Nesumi A, Saito T, Kanda T, Yamada K, Tachibana H (2011) Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars. PLoS ONE 6:e23426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furuya T, Orihara T, Tsuda Y (1990) Caffeine and theanine from cultured cells of Camellia sinensis. Phytochemistry 29:2539–2547

    Article  CAS  Google Scholar 

  • Ghanati F, Ishka MR (2006) Improvement of antioxidant system and decrease of lignin by nickel treatment in tea plant. J Plant Nutr 29:1649–1661

    Article  CAS  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    Article  CAS  Google Scholar 

  • Ghosh Hazra N (2001) Advances in selection and breeding of tea—a review. J Plant Crop 29:1–17

    Google Scholar 

  • Gohain B, Borchetia S, Bhorali P, Agarwal N, Bhuyan LP, Rahman A, Sakata K, Mizutani M, Shimizu B, Gurusubramaniam G, Ravindranath R, Kalita MC, Hazarika M, Das S (2012) Understanding Darjeeling tea flavour on a molecular basis. Plant Mol Biol 78:577–597

    Article  CAS  PubMed  Google Scholar 

  • Gonbad RA, Sinniah UR, Aziz MA, Mohamad R (2014) Influence of cytokinins in combination with GA3 on shoot multiplication and elongation of tea clone Iran 100 (Camellia sinensis (L.) O. Kuntze). The Sci World. doi:10.1155/2014/943054

    Google Scholar 

  • Goonetilleke WASNST, Priyantha PGC, Mewan KM, Gunasekare MTK (2009) Assessment of genetic diversity of tea (Camellia sinensis L.O. Kuntze) as revealed by RAPD-PCR markers. J Nat Sci Found Sri Lanka 37:147–150

    CAS  Google Scholar 

  • Gul S, Ahmad H, Khan IA, Alam M (2007) Assessment of diversity of tea genotypes through RAPD markers. Pak J Biol Sci 10:2609–2611

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Saikia H, Borchetia S, Kalita MC, Handique K, Das S (2012) Identification of drought tolerant progenies in tea by gene expression analysis. Funct Integr Genom 12:543–563

    Article  CAS  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Borchetia S, Kalita MC, Handique AK, Das S (2013) Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotech 53:237–248

    Article  CAS  Google Scholar 

  • Gurusubramanian G, Rahman A, Sarmah M, Ray S, Bora S (2008) Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. J Environ Biol 29:813–826

    CAS  PubMed  Google Scholar 

  • Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85:346–355

    Article  CAS  PubMed  Google Scholar 

  • Hairong X, Qiqing T, Wanfanz Z (1987) Studies on the genetic tendency of tea plant hybrid generation using isozyme technique. In: Proceedings of International Symposium on Tea Quality and Human Health, November 4–9, China, pp 21–25

  • Hajiboland R, Bastani S, Rad SB (2011) Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biol Szedediensis 55:265–272

    Google Scholar 

  • Hao C, Wang Y, Yang S (1994) Effects of macroelements on the growth of tea callus and the accumulation of catechins. J Tea Sci (China)14:31–36

  • Hare PD, Cress WA, VanStaden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant, Cell Environ 21:535–553

    Article  CAS  Google Scholar 

  • Haridas V, Balasaravanan T, Rajkumar R, Marimuthu S (2000) Factor influencing somatic embryogenesis in Camellia sinensis (L.) O.Kuntze. In: Muraleedharan N, RajKumar R (eds) Recent Advances in Plantation Crops Research. Allied Publishers Ltd, India, pp 31–35

    Google Scholar 

  • Hou YJ, He Q, Li ZL, Li PW, Liang GL, Xu J (2007) ISSR applied to the germplasms identification of Camellia sinensis. Southwest China J Agri Sci 26:1272–1276

    Google Scholar 

  • Hu YG, Lu YZ, Lu J (2013) Comparative proteomics analysis of tea leaves exposed to subzero temperature: molecular mechanism of freeze injury. Int J Agric Biol Eng 6:27–34

    CAS  Google Scholar 

  • Hua LD, Dai ZD, Hui X (1999) Studies on somatic embryo and adventitious bud differentiation rate among different tissues of Camellia sinensis L. Acta Agron Sin 25:291–295

    Google Scholar 

  • Huang JA, Li JX, Huang YH, Luo JW, Gong ZH, Liu ZH (2005) Construction of AFLP molecular markers linkage map in tea plant. J Tea Sci 25:7–15

    CAS  Google Scholar 

  • Huang FP, Liang YR, Lu JL, Chen RB (2006a) Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. J Tea Sci 26:171–176

    Google Scholar 

  • Huang JN, Li J, Huang Y, Luo J, Zong Z, Liu Z (2006b) Genetic diversity of tea [Camellia sinensis (L.) O. Kuntze] cultivars revealed by AFLP analysis. Acta Hort Sin 33:317–322

    CAS  Google Scholar 

  • Huang JA, Huang YH, Luo JW, Li JX, Gong ZH, Liu ZH (2007) Identification of single nucleotide polymorphism in polyphenol oxidase gene in tea plant (Camellia sinensis). J Hunan Agri Uni 33:454–458

    CAS  Google Scholar 

  • Hui LX, Lin LC, Peng SZ, Wu LJ, Wen SC, Hua GZ, Xuan C, Li XH, Liu CL, Shi ZP, Luo JW, Shen CW, Gong ZH, Chen X (2004) Analysis of genetic relationships among “Rucheng Baimao Cha” plants with RAPD method. J Tea Sci 24:33–36

    Google Scholar 

  • Hung CY, Wang KH, Huang CC, Gong X, Ge XJ, Chiang TY (2008) Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays (PIMA). Conserv Genet 9:779–781

    Article  CAS  Google Scholar 

  • Ishida M, Kitao N, Mizuno K, Tanikawa N, Kato M (2009) Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants. Planta 229:559–568

    Article  CAS  PubMed  Google Scholar 

  • Jain SM, Newton RJ (1990) Prospects of biotechnology for tea improvement. Proc Ind Nat Sci Acad 56:441–448

    Google Scholar 

  • Jain SM, Das SC, Barman TS (1993) Enhancement of root induction from in vitro regenerated shoots of tea (Camellia sinensis L.). Proc Ind Natl Sci Acad 59:623–628

    Google Scholar 

  • Jha TB, Sen SK (1992) Micropropagation of an elite Darjeeling tea clone. Plant Cell Rep 11:101–104

    Article  CAS  PubMed  Google Scholar 

  • Ji PZ, Zhang J, Wang PS, Huang XQ, Xu M, Tang YC, Liang MZ (2007) Genetic diversity of ancient tea plant in Yunnan province of Chian revealed by inter-simple sequence repeat (ISSR) polymerase Chain reaction. J Tea Sci 27:271–279

    CAS  Google Scholar 

  • Ji PZ, Li H, Gao LZ, Zhang J, Chen GZQ, Huang XQ (2011) ISSR diversity and genetic differentiation of ancient tea (Camellia sinensis var. assamica) plantations from china: implications for precious tea germplasm conservation. Pak J Bot 43:281–291

    CAS  Google Scholar 

  • Jiang C, Li Y, Fang W (2005) cDNA cloning and prokaryotic expression of β-glucosidase in tea plant [Camellia sinensis (L.) O. Kutze]. Chinese J Agril Biotech 2:107–111

    CAS  Google Scholar 

  • Jiang C, Wen Q, Chen Y, Xu LA, Huang MR (2011) Efficient extraction of RNA from various Camellia species rich in secondary metabolites for deep transcriptome sequencing and gene expression analysis. Afr J Biotech 10:16769–16773

    Article  CAS  Google Scholar 

  • Jin JQ, Cui HR, Chen WY, Lu MZ, Yao YL, Xin Y, Gong XC (2006) data mining for SSR in ESTs and development of EST-SSR marker in tea plant (Camellia sinensis). J Tea Sci 26:17–23

    CAS  Google Scholar 

  • Jin JQ, Cui HR, Gong XC, Chen WY, Xin Y (2007) Studies on tea plants (Camellia sinensis) germplasms using EST-SSR marker. Yi Chuan 29:103–108

    Article  CAS  PubMed  Google Scholar 

  • John KMM, Joshi DS, Mandal AKA, Kumar SR, Raj Kumar R (2009) Agrobacterium mediated hairy root production in tea leaves [Camellia sinensis L (O) kuntze]. Indian J Biotech 8:430–434

    CAS  Google Scholar 

  • Jorge S, Pedroso MC, Neale DB, Brown G (2003) Genetic differentiation of Portuguese tea plant using RAPD markers. Hort Sci 38:1191–1197

    CAS  Google Scholar 

  • Jung ES, Park HM, Lee KE, Shin JH, Mun S, Kim JK, Lee SJ, Liu KH, Hwang JK, Lee CH (2015) A metabolomics approach shows that catechin-enriched green tea attenuates ultraviolet B-induced skin metabolite alterations in mice. Metabolomics 11:861–871

    Article  CAS  Google Scholar 

  • Kafkas S, Ercisxli S, Doğan Y, Ertűrk Y, Haznedar A, Sekban R (2009) Polymorphism and genetic relationships among tea genotypes from turkey revealed by amplified fragment length polymorphism markers. J Amer Soc Hort Sci 134:428–434

    Google Scholar 

  • Kamunya SM, Wachira FN, Pathak RS, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja PS, Sharma RK (2010) Genome mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genom 6:915–929

    Article  Google Scholar 

  • Karthigeyan S, Rajkumar S, Sharma RK, Gulati A, Sud RK, Ahuja PS (2008) High level of genetic diversity among the selected accessions of tea (Camellia sinensis) from abandoned tea gardens in Western Himalaya. Biochem Genet 46:810–819

    Article  CAS  PubMed  Google Scholar 

  • Kato M (1982) Results of organ culture on Camellia japonica and C. sinensis. Jpn J Breed 32:267–277

    Google Scholar 

  • Kato M (1985) Regeneration of plantlets from tea stem callus. Jpn J Breed 35:317–322

    Article  Google Scholar 

  • Kato M (1986a) Micropropagation through cotyledon culture in Camellia japonica L. and Camellia sinensis L. Jpn J Breed 36:31–38

    Article  CAS  Google Scholar 

  • Kato M (1986b) Micropropagation through cotyledon culture in Camellia sasanqua. Jpn J Breed 36:82–83

    Article  Google Scholar 

  • Kato M (1989) Camellia sinensis L. (tea): in vitro regeneration. In: Bajaj YSP (ed) Biotechnology in agriculture and forestry, vol 7: medicinal and aromatic plants II. Springer, Germany, pp 82–98

    Google Scholar 

  • Kato M (1996) Somatic embryogenesis from immature leaves of in vitro grown tea shoots. Plant Cell Rep 15:920–923

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara A (2000) Caffeine synthase gene from tea leaves. Nature 406:956–957

    Article  CAS  PubMed  Google Scholar 

  • Kato F, Taniguchi F, Monobe M, Ema K, Hirono H, Maeda-Yamamoto M (2008) Identification of Japanease tea (Camellia sinensis) cultivars using SSR marker. J Jap Soc Food Sci Tech 55:49–55

    Article  CAS  Google Scholar 

  • Katoh Y, Katoh M, Takeda Y, Omori M (2003) Genetic diversity within cultivated teas based on nucleotide sequence comparison of ribosomal RNA maturase in chloroplast DNA. Euphytica 134:287–295

    Article  CAS  Google Scholar 

  • Katsuo K (1969) Anther culture in tea plant (a preliminary report). Study Tea 4:31

    Google Scholar 

  • Kaundun SS, Matsumoto S (2002) Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome 45:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Kaundun SS, Matsumoto S (2003a) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet 106:375–383

    CAS  PubMed  Google Scholar 

  • Kaundun SS, Matsumoto S (2003b) Identification of processed Japanese green tea based on polymorphism generated by STS-RFLP analysis. J Food Chem 51:1765–1770

    Article  CAS  Google Scholar 

  • Kaundun SS, Matsumoto S (2011) Molecular evidence for maternal inheritance of the chloroplast genome in tea, Camellia sinensis (L.) O. Kuntze. J Sci Food Agric 91:2660–2663

    Article  CAS  PubMed  Google Scholar 

  • Kaundun SS, Park YG (2002) Genetic structure of six Korean tea populations revealed by RAPD-PCR markers. Crop Sci 42:594–601

    Article  CAS  Google Scholar 

  • Kaundun SS, Zhyvoloup A, Park YG (2000) Evaluation of genetic diversity among elite tea (Camellia sinensis var. sinensis) accessions using RAPD markers. Euphytica 115:7–16

    Article  CAS  Google Scholar 

  • Kirita M, Honma D, Tanaka Y, Usui S, Shoji T, Sami M, Yokota T, Tagashira M, Muranaka A, Uchiyama M, Kanda T, Maeda-Yamamoto M (2010) Cloning of a novel O-methyltransferase from Camellia sinensis and synthesis of o-methylated EGCG and evaluation of their bioactivity. J Agric Food Chem 58:7196–7201

    Article  CAS  PubMed  Google Scholar 

  • Kondo K (1975) Cytological studies in cultivated species of Camellia. Ph.D thesis, Univ NC, Chapel Hill, pp 260

  • Kondo K (1979) Cytological studies in cultivated species of Camellia.V. Intraspecific variation of karyotypes in two species of sect Thea. Jap J Breed 29:205–210

    Article  Google Scholar 

  • Kondo K, Parks CR (1981) Cytological studies in cultivated species of Camellia. VI. Giemsa C-banded karyotypes of seven accessions of Camellia japonica L. sensu lato. Jap J Breed 31:25–34

    Article  Google Scholar 

  • Konishi S (1992) Promotive effects of aluminium on tea plant growth. Jpn Agric Res Q26:26–33

    Google Scholar 

  • Koretskaya TF, Zaprometov MN (1975) Phenolic compounds in the tissue culture of Camellia sinensis and effect of light on their formation. Fiziol Rast 22:941–946

    CAS  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S, Chandrabose SRS, Mandal AKA (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Plant Physiol Biotech 49:565–571

    Article  CAS  Google Scholar 

  • Ku KM, Choi JN, Kim J, Kim JK, Yoo LG, Lee SJ, Hong YS, Lee CH (2010) Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J Agric Food Chem 58:418–426

    Article  CAS  PubMed  Google Scholar 

  • Kuboi T, Suda M, Konishi S (1991) Preparation of protoplasts from the leaves. Proceedings of International Symposium on Tea Science. Shizuoka, Japan, pp 427–431

    Google Scholar 

  • Lai JA, Yang WC, Hsiao JY (2001) An assessment of genetic relationships in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot Bull Acad Sin 42:93–100

    CAS  Google Scholar 

  • Lambert JD, Yang CS (2003) Mechanisms of cancer prevention by tea constituents. J Nutr 133:3262S–3267S

    CAS  PubMed  Google Scholar 

  • Latip SNH, Muhamad R, Manjeri G, Tan SG (2010) Genetic variation of selected Camellia sinensis (cultivated tea) varieties in Malaysia based on random amplifed microsatellite (RAMs) markers. Pertanika J Trop Agric Sci 33:259–267

    Google Scholar 

  • Lee S, Kim J, Sano J, Ozaki Y, Okubo H (2003) Phylogenic relationships among tea cultivars based on AFLP analysis. J Food Agri 47:289–299

    CAS  Google Scholar 

  • Lee JE, Lee BJ, Chung JO, Hwang JA, Lee SJ, Lee CH, Hong YS (2010) Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a 1H NMR-based metabolomics study. J Agril Food Chem 58:10582–10589

    Article  CAS  Google Scholar 

  • Lee JE, Lee BJ, Hwang JA, Ko KS, Chung JO, Kim EH, Lee SJ, Hong YS (2011) Metabolic dependence of green tea on plucking positions revisited: a Metabolomic Study. J Agric Food Chem 59:10579–10585

    Article  CAS  PubMed  Google Scholar 

  • Li B, Yin Y, Zhou Y, Deng PQ, Yang HW (2003) Genetic diversity of two sexual tea cultivars detected by RAPD markers. J Tea Sci 23:46–150

    Google Scholar 

  • Li J, Jiang CJ, Wang ZX (2005) RAPD analysis on genetic diversity of the preconcentrated core germplasms of Camellia sinensis in China. Yi Chuan 27:765–771

    CAS  PubMed  Google Scholar 

  • Li XH, Zhang CZ, Liu CL, Shi ZP, Luo JW, Chen X (2007a) RAPD analysis of the genetic diversity in Chinese tea germplasm. Acta Hort Sinica 34:507–508

    CAS  Google Scholar 

  • Li Y, Gu W, Ye S (2007b) Expression and location of caffeine synthase in tea plants. Russ J Plant Physiol 54:698–701

    Article  CAS  Google Scholar 

  • Li J, Chen J, Zhang Z, Pan Y (2008) Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. J Agric Food Chem 56:7535–7544

    Article  CAS  PubMed  Google Scholar 

  • Li XW, Feng ZG, Yang HM, Zhu XP, Liu J, Yuan HY (2010) A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco. Biochem Biophys Res Commun 394:354–359

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zheng Y, Zhou J, Xu J, Ni D (2011a) Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine. Biol Plant 55:563–566

    Article  CAS  Google Scholar 

  • Li Q, Huang J, Liu S, Li J, Yang X, Liu Y, Liu Z (2011b) Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar. Proteom Sci 9:44–56

    Article  CAS  Google Scholar 

  • Li L, Zhong YH, Ji YZ, Zhi YZ, Sui N (2012) Analysis on genetic diversity of ten insular populations of Camellia japonica. Acta Hort Sin 39:1531–1539

    Google Scholar 

  • Lin Z-H, Chen L-S, Chen R-B, Zhang F-Z, Jiang H-X, Tang N (2009) CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol 9:43–58

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin YP, Hu CY, Tsai YZ, Lin SF (2010) Studies on the fast molecular identification technologies of made tea (Camellia sinensis) varieties and their applications. Crop Envir Bioinform 7:37–51

    CAS  Google Scholar 

  • Lin J, Kudrna D, Wing RA (2011) Construction, Characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis) J Biomed. Biotech 2011:476723–476731

    Google Scholar 

  • Liu S, Han B (2010) Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant. BMC Plant Biol 10:228–238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu BY, Wang PS, Ji PZ, Xu M, Cheng H (2008) Study on genetic diversity of peculiar sect. Thea (L.) dye in Yunnan by ISSR markers. J Yunn Agri Uni 23:302–308

    CAS  Google Scholar 

  • Liu BY, Li YY, Tang YC, Wang LY, Cheng H, Wang PS (2010) Assessment of genetic diversity and relationship of tea germplasm in Yunnan as revealed by ISSR markers. Acta Agro Sinica 36:391–400

    CAS  Google Scholar 

  • Liu B, Sun X, Wang Y, Li Y, Cheng H, Xiong C, Wang P (2012a) Genetic diversity and molecular discrimination of wild tea plants from Yunnan Province based on inter-simple sequence repeats (ISSR) markers. Afr J Biotech 11:11566–11574

    CAS  Google Scholar 

  • Liu Y, Yang SX, Ji PZ, Gao LZ (2012b) Phylogeography of Camellia taliensis (Theaceae) inferred from chloroplast and nuclear DNA: insights into evolutionary history and conservation. BMC Evol Biol 12:92–117

    Article  PubMed Central  PubMed  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia lalifolia by use of shoot tip culture. Comb Proc Int Pl Prop Soc 30:421–427

    Google Scholar 

  • Lou ZC, Shin YL, Ying LC (2004) Genetic relationship of Taiwan tea varieties. In: Proceeding of 2004 International Conf on O-CHA culture and Sci. 4–6 Shizuoka, Japan, pp 226-228

  • Luo JW, Shi ZP, Li JX, Shen CW, Huang YH, Gong ZH (2002a) Study on the application of RAPD techniques to parentage identification of tea plant. J Huanan Agril Univer 3:3–6

    Google Scholar 

  • Luo JW, Shi ZP, Shen CW, Liu CL, Gong ZH, Huang YH (2002b) Stuies on genetic relationships of tea cultivars (Camellia sinensis (L.) O. Kuntze) by RAPD analysis. J Tea Sci 22:140–146

    CAS  Google Scholar 

  • Luo JW, Shi ZP, Shen CW, Liu CL, Gong ZH, Huang YH, Luo JW, Shi ZP, Shen CW, Liu CL, Gong ZH, Huang YH (2004) The genetic diversity of tea germplasms [Camellia sinensis (L.) O. Kuntze] by RAPD analysis. Acta Agro Sin 30:266–269

    CAS  Google Scholar 

  • Ma C, Qiao X, Chen L (2010a) Cloning and expression analysis of leucoanthocyantin reducase gene of tea plant (Camellia sinensis). J Tea Sci (CNKI:SUN:CYKK. 0.2010-01-006)

  • Ma JQ, Zhou YH, Ma CL, Yao MZ, Jin JQ, Wang XC, Chen L (2010b) Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae). Ame J Bot 97:153–156

    Article  CAS  Google Scholar 

  • Ma J-Q, Ma C-L, Yao M-Z, Jin J-Q, Wang Z-L, Wang X-C, Chen L (2012) Microsatellite markers from tea plant expressed sequence tags (ESTs) and their applicability for cross-species/genera amplification and genetic mapping. Sci Hort 134:167–175

    Article  CAS  Google Scholar 

  • Ma J-Q, Yao M-Z, Ma C-L, Wang X-C, Jin J-Q et al (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 9:e93131. doi:10.1371/journal.pone.0093131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminum in tea leaves. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Matsumoto S, Takeuchi A, Hayastsu M, Kondo S (1994) Molecular cloning of phenylalanine ammonia-lyase cDNA and classification of varieties and cultivars of tea plants (Camellia sinensis) using the tea PAL cDNA probes. Theor Appl Genet 89:671–675

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Kiriwa Y, Takeda Y (2000) Analysis of genetic diversity in Chinease tea (Camellia sinensis) using RFLP and detection of difference on tea from Japanease. Breed Sci 2:209

    Google Scholar 

  • Matsumoto S, Kiriwa Y, Takeda Y (2002) Differentiation of Japanese green tea as revealed by RFLP analysis of phenyl-alanine ammonia-lyase DNA. Theo Appl Genet 104:998–1002

    Article  CAS  Google Scholar 

  • Matsumoto S, Kiriwa Y, Yamaguchi S (2004) The Korean tea plant (Camellia sinensis): rFLP analysis of genetic diversity and relationship to Japanease tea. Breed Sci 54:231–237

    Article  CAS  Google Scholar 

  • Matsuura T, Kakuda T, Kinoshita T, Takeuchi N, Sasaki K (1991) Production of theanine by callus culture of tea. In: Proceedings of international symposium on tea science. Shizuka, Japan, August 26–29, pp 432–436

  • Mewan KM, Saha MC, Konstatin C, Pang Y, Abeysinghe ISB, Dixon RA (2007) Construction of genomic and EST-SSR based genetic linkage map of tea (Camellia sinensis). The 4th International conference on O-Cha (Tea) culture and science. Nov 2–4, Shizuoka, Japan, p 52

  • Mishra RK, Sen-Mandi S (2001) DNA fingerprinting and genetic relationship study of tea plants using amplified fragment length polymorphism (AFLP) technique. Ind J Plant Genet Resour 14:148–149

    Google Scholar 

  • Mishra RK, Sen-Mandi S (2004) Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Curr Sci 87:60–66

    CAS  Google Scholar 

  • Mishra RK, Chaudhary S, Ahmad A, Pradhan M, Siddiqi TO (2009) Molecular analysis of tea clones (Camellia sinensis) using AFLP markers. Int J Intrg Biol 5:130–135

    CAS  Google Scholar 

  • Mizutani M, Nakanishi H, Ema J, Ma S, Noguchi E, Inohara-Ochiai M, Fukuchi-Mizutani M, Nakao M, Sakata K (2002) Cloning of β-Primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiol 130:2164–2176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Yadav SK (2012) Characterization of novel small RNAs from tea (Camellia sinensis L.). Mol Biol Rep 39:3977–3986

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos. Biol Plant 52:381–384

    CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mol Biotech 48:235–243

    Article  CAS  Google Scholar 

  • Mondal TK (2000) Studies on RAPD markers for detection of genetic diversity, in vitro regeneration and Agrobacterium-mediated genetic transformation of tea (Camellia sinensis). Ph.D. thesis, Utkal University, India

  • Mondal TK (2002a) Micropropagation of tea (Camellia sinensis). In: Jain SM (ed) Micropropagation of Woody Plants. Kluwer Publication, The Netherlands, pp 671–720

    Google Scholar 

  • Mondal TK (2002b) Camellia biotechnology: a bibliographic search. Int J Tea Sci 1:28–37

    Google Scholar 

  • Mondal TK (2002c) Detection of genetic diversity among the Indian tea (Camellia sinensis) germplasm by inter-simple sequence repeats (ISSR). Euphytica 128:307–315

    Article  Google Scholar 

  • Mondal TK (2008) Tea. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic plantation crops, ornamentals and turf grasses. Blackwell Publishing Ltd, London, pp 99–115

    Chapter  Google Scholar 

  • Mondal TK (2011) Camellia. In: Kole C (ed) Wild crop relatives: genomic and breeding resources. Springer-Verlag, Heidelberg, pp 15–40

    Chapter  Google Scholar 

  • Mondal TK, Chand PK (2002) Detection of genetic instability among the micropropagated tea [Camellia sinensis (L.) O. Kuntze] by RAPD analysis. In Vitro Cell Dev Biol-Plant 37:1–5

  • Mondal TK, Sutoh K (2013) Application of next generation sequencing for abiotic stress tolerance of plant. In: Bhar D, Vasudeo Z (eds) Applications in Biomedical, Agricultural, and Environmental Sciences. CRC Press, pp 347–365

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (1998) Micropropagation of tea using thidiazuran. Plant Growth Regul 26:57–61

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattachraya A, Sood A, Ahuja PS (1999) An efficient protocol for somatic embryogenesis and its use in developing transgenic tea (Camellia sinensis (L.) O. Kuntze) for field transfer. In: Altman A, Ziv M, Izhar S (eds) Plant Biotechnology and In Vitro Biology in 21st Century. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 101–104

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2000a) Factors affecting induction and storage of encapsulated tea (Camellia sinensis L. O. Kuntze) somatic embryos. Tea 21:92–100

    Google Scholar 

  • Mondal TK, Ahuja PS, Chand PK (2000b) Molecular characterization of biodiversity in tea (Camellia sinensis (L.) O. Kuntze) germplasm and ex situ conservation through in vitro culture. In: Symposium on Biodiversity Conservation for Environment Protection, Utkal Univ, Bhubaneswar, India, March 16–17, pp 9–10

  • Mondal TK, Singh HP, Ahuja PS (2000c) Isolation of genomic DNA from tea and other phenolic rich plants. J Plant Crop 28:30–34

  • Mondal TK, Bhattacharya A, Ahuja PS (2001a) Induction of synchronous secondary embryogenesis of tea (Camellia sinensis). J Plant Physiol 158:945–951

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001b) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium—mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Sharma M, Ahuja PS (2001c) Induction of in vivo somatic embryogenesis in tea (Camellia sinensis) cotyledons. Curr Sci 81:101–104

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2002a) Factors affecting germination and conversion frequency of somatic embryos of tea [Camellia sinensis (L.) O. Kuntze]. J Plant Physiol 159(12):1317–1321

    Article  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (2002b) Propagation of tea (Camellia sinensis (L.) Kuntze) by shoot proliferation of alginate-encapsulated axillary buds stored at 4 °C. Curr Sci 83(8):941–944

    Google Scholar 

  • Mondal TK, Satya P, Medda PS (2003) India needs national tea germplasm repository. International Conference on Global Advances in Tea Science. November 20–22, Calcutta, India, pp 58–59

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advances in tea biotechnology. Plant Cell Tiss Org Cult 75:795–856

    Google Scholar 

  • Mondal TK, Parathiraj S, Mohan Kumar P (2005) Micrografting-a technique to shorten the hardening time of micropropagated shoots of tea (Camellia sinensis (L.) O. Kuntze) Sri Lanka J Tea Sci 70(1):5–9

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinsensis (L.) Kuntze). Phytochemistry 69:147–153

    Article  CAS  PubMed  Google Scholar 

  • Mphangwe NI, Vorster J, Steyn JM, Nyirenda HE, Taylor NJ, Apostolides Z (2013) Screening of tea (Camellia sinensis) for trait-associated molecular markers. Appl Biochem Biotechnol 171(2):437–449

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Mondal TK, Mohan Kumar P, Jayachandran R (2005) Field level control of stem cancer (Macrophomea theicola) diseases of tea (Camellia sinensis (L.). O. Kuntze) by Trichoderma. Hort J Agri-Hort Soc India, Calcutta 15:20–25

    Google Scholar 

  • Mukhopadhyay M, Mondal TK (2014) The physico-chemical responses of Camellia to abiotic stresses. J Plant Sci Res 1:105

    Google Scholar 

  • Mukhopadhyay M, Mondal TK (2015) Effect of zinc and boron on growth and water relations of Camellia sinensis (L.) O. Kuntze cv. T-78. Nat Acad Sci Lett. doi:10.1007/s40009-015-0381-5

  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh PD, Mondal TK (2013a) Structural, physiological and biochemical profiling of tea plantlets (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biol Plant 57:474–480

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Ghosh PD, Mondal TK (2013b) Effect of boron deficiency on photosynthesis and antioxidant responses of young tea (Camellia sinensis (L.) O. Kuntze) plantlets. Russ J Plant Physiol 60:633–639

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Sarkar B, Mondal TK (2014) Omics advances of tea (Camellia sinensis). In: Omics approaches in crop sciences. CRC press, pp 439–465

  • Mukhopadyay M, Bantawa P, Das A, Sarkar B, Bera B, Ghosh PD, Mondal TK (2012) Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea (Camellia sinensis (L.) O. Kuntze) seedling under aluminum stress. Biometal 25:1141–1154

    Article  CAS  Google Scholar 

  • Muoki RC, Wachira FN, Pathak RS, Kamunya SM (2007) Assessment of the mating system of Camellia sinensis in biclonal seed orchards based on PCR markers. J Hort Sci Biotech 82:733–738

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthaiya MJ, Nagella P, Thiruvengadam M, Mandal AKA (2013) Enhancement of the productivity of tea (Camellia sinensis) secondary metabolites in cell suspension cultures using pathway inducers. J Crop Sci Biotech 16:143–149

    Article  Google Scholar 

  • Nadamitsu S, Andoh Y, Kondo K, Segawa M (1986) Interspecific hybrids between Camellia vietnamensis and C. chrysantha by cotyledon culture. Jpn J Breed 36:309–313

    Article  Google Scholar 

  • Nakamura Y (1983) Isolation of protoplasts from tea plant. Tea Res J 58:36–37

    Article  Google Scholar 

  • Nakamura Y (1985) Effect of origin of explants on differentiation of root and its varietal difference in tissue culture of tea plant. Tea Res J 62:1–8

    Article  Google Scholar 

  • Nakamura Y (1988) Efficient differentiation of adventitious embryos from cotyledon culture of Camellia sinensis and other Camellia species. Tea Res J 67:1–12

    Google Scholar 

  • Nat NVK, Sanjeeva S, William Y, Nidhi S (2007) Application of proteomics to investigate plant- microbe interactions. Curr Proteomics 4:28–43

    Article  Google Scholar 

  • Nguyen VT (2012) Regeneration plantlets from somatic embryos of tea plant (Camellia sinensis L.). J Agri Tech 8:1821–1827

    CAS  Google Scholar 

  • Nikolaeva TN, Zagoskina NV, Zaprometov MN (2009) Production of phenolic compounds in callus cultures of tea plant under the effect of 2,4-D and NAA. Russ J Plant Physiol 56:45–49

    Article  CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:185

    Article  Google Scholar 

  • Ogutuga DBA, Northcote DH (1970) Caffeine formation in tea callus tissue. J Exp Bot 21:258–273

    Article  CAS  Google Scholar 

  • Ohsako T, Ohgushi T, Motosugi H, Oka K (2008) Microsatellite variability within and among local landrace populations of tea, Camellia sinensis (L.) O. Kuntze, in Kyoto, Japan. Genet Resour Crop Evol 55:1047–1053

    Article  Google Scholar 

  • Okano N, Fuchinone Y (1970) Production of haploid plants by anther culture of tea in vitro. Jpn J Breed 20:63–64

    Google Scholar 

  • Orihara Y, Furuya T (1990) Production of theanine and other γ-glutamine derivatives by Camellia sinensis cultured cells. Plant Cell Rep 9:1215–1224

    Article  Google Scholar 

  • Paratasilpin T (1990) Comparative studies on somatic embryogenesis in Camellia sinensis var. sinensis and C. sinensis var. assamica (Mast.) Pierre. J Sci Soc Thailand 16:23–41

    Article  Google Scholar 

  • Park YG, Kaundun SS, Zhyvoloup A (2002) Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korean tea plantations. Genet Res Crop Evol 49:159–165

    Article  Google Scholar 

  • Park JS, Kim JB, Hahn BS, Kim KH, Ha SH, Kim JB, Kim YH (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci 166:953–961

    Article  CAS  Google Scholar 

  • Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among population of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255–263

    Article  CAS  Google Scholar 

  • Paul A, Lal L, Ahuja PS, Kumar S (2012a) Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep 39:3485–3490

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Muoki RC, Singh K, Kumar S (2012b) CsNAM-like protein encodes a nuclear localized protein and responds to varied cues in tea [Camellia sinensis (L.) O. Kuntze]. Gene 502:69–74

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Jha A, Bhardwaj S, Singh S, Shankar R, Kumar S (2014) RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Sci Rep 4: 5932. doi:10.1038/srep05932

  • Pedroso MC, Pais MS (1993) Direct embryo formation in leaves of Camellia japonica L. Plant Cell Rep 12:639–643

    Article  CAS  PubMed  Google Scholar 

  • Phukon M, Namdev R, Deka D, Modi SK, Sen P (2012) Construction of cDNA library and preliminary analysis of expressed sequence tags from tea plant [Camellia sinensis (L) O. Kuntze]. Gene 506:202–206

    Article  CAS  PubMed  Google Scholar 

  • Plata E, Vieitez AM (1990) In vitro regeneration of Camellia reticulata by somatic embryogenesis. J Hortic Sci 65:707–714

    Google Scholar 

  • Plata E, Ballester A, Vieitez AM (1991) An anatomical study of secondary embryogenesis in Camellia reticulata. In vitro Cell Dev Biol Plant 27:183–189

    Article  Google Scholar 

  • Ponsamuel J, Samson NP, Ganeshan PS, Satyaprakash V, Abrahan GC (1996) Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L.) O. Kuntze). Plant Cell Rep 16:210–214

    Article  CAS  PubMed  Google Scholar 

  • Prabu GR, Mandal AK (2010) Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genom Proteom Bioinform 8:113–121

    Article  CAS  Google Scholar 

  • Prabu GR, Thirugnanasambantham K, Mandal AKA, Saravanan A (2012) Molecular cloning and characterization of nucleoside diphosphate kinase 1 cDNA in tea. Biol Plant 56:140–144

    Article  CAS  Google Scholar 

  • Prakash O, Sood A, Sharma M, Ahuja PS (1999) Grafting micropropagated tea (Camellia sinensis (L.) O. Kuntze) shoots on tea seedling—a new approach to tea propagation. Plant Cell Rep 18:137–142

    Google Scholar 

  • Prince LM, Parks CR (1997) Evolutionary relationships in the tea subfamily Theoideae based on DNA sequence data. Int Camellia J 29:135–144

    Google Scholar 

  • Prince LM, Parks CR (2000) Estimation on relationships of Theoideae (Theaceae) infreed from DNA Data. Int Camellia J 32:79–84

    Google Scholar 

  • Prince ML, Parks CR (2001) Phylogenic relationships of Theaceae inferred from chloroplast DNA sequence data. Amer J Bot 88:2320

    Article  Google Scholar 

  • Qian D, Chang-quan W, Bing L, Huan-xiu L, Yang L (2009) Effects of Se, Zn and their interaction on polyphenol oxidase activity of tea leaves in summer season. Acta Metall Sin 15:930–935

    Google Scholar 

  • Raina SK, Iyer RD (1992) Multicell pollen proembryoid and callus formation in tea. J Plant Crops 9:100–104

    Google Scholar 

  • Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P, Negi R, Sharma V, Singh SS, Sud RK, Kalia RK, Pandey V, Banik J, Razdan V, Sehgal D, Dar TH, Kumar A, Bali S, Bhat V, Sharma S, Prasanna BM, Goel S, Negi MS, Vijayan P, Tripathi SB, Bera B, Hazarika M, Mandal AKA, Kumar RR, Vijayan D, Ramkumar S, Chowdhury BR, Mandi SS (2012) Genetic structure and diversity of India hybrid tea. Genet Resour Crop Evol 59:1527–1541

    Article  CAS  Google Scholar 

  • Rajasekaran P (1997) Development of molecular markers using AFLP in tea. In: Varghese JP (ed) Molecular Approaches to Crop Improvement. Proceedings of National Seminar on Molecular approaches to Crop Improvement Dec 29-31, Kottayam, Kerala, India, pp 54–58

  • Rajasekaran P, Mohankumar P (1992) Rapid micropropagation of tea (Camellia spp). J Plant Crops 20:248–251

    Google Scholar 

  • Rajkumar R, Ayyappan P (1992) Somatic embryogenesis from cotyledonary explants of Camellia sinensis (L.) O. Kuntze. Plant Chron May, pp 227–229

  • Rana NK, Mohanpuria P, Yadav SK (2008) Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress. Biol Plant 52:361–364

    Article  CAS  Google Scholar 

  • Ranaweera KK, Gunasekara MTK, Eeswara JP (2013) Ex vitro rooting: a low cost micropropagation technique for Tea (Camellia sinensis (L.) O. Kuntz) hybrids. Sci Hort 155:8–14

    Article  CAS  Google Scholar 

  • Rani A, Singh K, Sood P, Kumar S, Ahuja PS (2009) p-Coumarate: coA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomics 9:271–275

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Singh K, Ahuja PS, Kumar S (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205–210

    Article  CAS  PubMed  Google Scholar 

  • Roy SC, Chakraborty BN (2007) Evaluation of genetic diversity in tea of the Darjeeling foot hills, India using RAPD and ISSR markers. J Hill Res 20:13–19

    Google Scholar 

  • Roy SC, Chakraborty BN (2009) Genetic diversity and relationship among tea (Camellia sinensis) cultivars as revealed by RAPD and ISSR based fingerprinting. Ind J Biotech 8:370–376

    CAS  Google Scholar 

  • San-Jose MC, Vieitez AM (1993) Regeneration of Camellia plantlets from leaf explant cultures by embryogenesis and caulogenesis. Sci Hortic 54:303–315

    Article  Google Scholar 

  • Sarathchandra TM, Upali PD, Wijeweardena RGA (1988) Studies on the tissue culture of tea (Camellia sinensis (L.) O. Kuntze) 4. Somatic embryogenesis in stem and leaf callus cultures. Sri Lanka J Tea Sci 52:50–54

    Google Scholar 

  • Saxena A, Cramer CS (2013) Metabolomics: a potential tool for breeding nutraceutical vegetables. Adv Crop Sci Tech 1:106

    Google Scholar 

  • Sen P, Bora U, Roy BK, Deka PC (2000) Isozyme characterization in Camellia spp. Crop Res 19:519–524

    Google Scholar 

  • Seran TH, Hirimburegama K, Hirimburegama WK, Shanmugarajah V (1999) Callus formation in anther culture of tea clones, Camellia sinensis (L.) O. Kuntze. J Nat Sci Fund Sri Lanka 27:165–175

    Google Scholar 

  • Seran TH, Hirimburegama K, Gunasekare MTK (2006) Direct somatic embryogenesis from explants obtained from in vitro germinated embryonic axes of Camellia sinensis (L.) O. Kuntze. UK J Horticultural Sci Biotech 8:183–190

    Google Scholar 

  • Seran TH, Hirimburegama K, Gunasekare MTK (2007) Production of embryogenic callus from leaf explants of Camellia sinensis (L.). J Nat Sci Foundation Sri Lanka 35:191–196

    CAS  Google Scholar 

  • Seurei P (1996) Tea improvement in Kenya: a review. Tea 17:76–81

    Google Scholar 

  • Shao WF, Pang RH, Duan HX, Wang PS, Xu M, Zhang YP, Li JH (2003a) RAPD analysis of tea in Yunnan. Sci Agril Sinica 36:1582–1587

    CAS  Google Scholar 

  • Shao WF, Pang RH, Duan HX, Wang PS, Xu M, Zhang YP, Li JH (2003b) Use of RAPD analysis to classify tea trees in Yunnan. Agril Sci China 2:1290–1296

    Google Scholar 

  • Sharma M, Sood A, Nagar PK, Prakash O, Ahuja PS (1999) Direct rooting and hardening of tea microshoots in the field. Plant Cell Tiss Org Cult 58:111–118

    Article  Google Scholar 

  • Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biol 9:53–77. doi:10.1186/1471-2229-9-53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R, Bhattachrya E, Tripathi SB, Vijayan D, Baruah AR, Das SC, Bera B, Rajkumar R, Thomas J, Sud RK, Muraleedharan N, Hazarika M, Lakshmikumaran M, Raina SN, Ahuja PS (2010) AFLP-based genetic diversity assessment of commercially important tea germplasm in India. Biochem Genet 48:549–564

    Article  CAS  PubMed  Google Scholar 

  • Sharma RKK, Negi MS, Sharma S, Bhardwaj P, Kumar R, Bhattachrya E, Tripathi SB, Vijayan D, Baruah AR, Das SC, Bera B, Rajkumar R, Thomas J, Sud RK, Muraleedharan N, Hazarika M, Sharma H, Kumar R, Sharma V, Kumar V, Bhardwaj P, Ahuja PS, Sharma RK (2011) Identification and cross-species transferability of 112 novel unigene-derived microsatellite markers in tea (Camellia sinensis). Amer J Bot 98:133–138

    Article  CAS  Google Scholar 

  • Shen CW, Luo JW, Shi ZP, Gong ZH, Tang HP, Liu FZ, Huang YH (2002) Study on genetic polymorphism of tea plants in Anhua Yuntaihan population by RAPD. J Huan Agril Univ 28:320–325

    CAS  Google Scholar 

  • Shen CW, Huang YH, Huang JA, Luo JW, Liu CL, Liu DH (2007) RAPD analysis for genetic diversity of typical tea populations in Hunan Province. J Agri Biotech 15:855–860

    CAS  Google Scholar 

  • Shen CW, Ning ZX, Huang JA, Chen D, Li JX (2009) Genetic diversity of Camellia sinensis germplasm in Guangdong Province based on morphological parameters and SRAP markers. Ying Yong Sheng Tai Xue Bao 20:1551–1558

    CAS  PubMed  Google Scholar 

  • Shervington A, Shervington LA, Afifi F, El-omari MA (1998) Caffeine and theobromine formation by tissue cultures of Camellia sinensis. Phytochemistry 47:1535–1536

    Article  CAS  Google Scholar 

  • Shi SH, Tang SQ, Chen YQ, Qu LH, Chang HT (1998) Phylogenic relationship among yellow flowered Camellia species based on random polymorphic DNA. Acta Phytotaxo Sinica 36:317–322

    Google Scholar 

  • Shi C-Y, Yang H, Wei C-L, Yu O, Zhang Z-Z, Jiang C-J, Sun J, Li Y-Y, Chen Q, Xia T, Wan X-C (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genom 12:131–150

    Article  CAS  Google Scholar 

  • Shi J, Dai X, Chen Y, Chen J, Shi J, Yin T (2013) Discovery and experimental analysis of microsatellites in an oil woody plant Camellia chekiangoleosa. Plant Syst Evol 299:1387–1393

    Article  CAS  Google Scholar 

  • Shibasaki-Kitakawa N, Takeishi J, Yonemoto T (2003) Improvement of catechin productivity in suspension cultures of tea callus cells. Biotechnol Prog 19:655–658

    Article  CAS  PubMed  Google Scholar 

  • Shimokado T, Murata T, Miyaji Y (1986) Formation of embryoid by anther culture of tea. Jpn J Breed 36:282–283

    Google Scholar 

  • Singh D, Ahuja PS (2006) 5S rDNA gene diversity in tea (Camellia sinensis [L.] O. Kuntze) and its use for variety identification. Genome 49:91–96

  • Singh M, Bandana, Ahuja PS (1999) Isolation and PCR amplification of genomic DNA from market samples of dry tea. Plant Mol Biol Rep 17:171–178

    Article  CAS  Google Scholar 

  • Singh A, Sharma J, Rexer K-H, Varma A (2000) Plant productivity determinants beyond minerals, water and light: Piriformospora indica—a revolutionary plant growth promoting fungus. Curr Sci 79:1548–1554

    Google Scholar 

  • Singh M, Saroop J, Dhiman B (2004) Detection of intra-clonal genetic variability in vegetatively propagated tea using RAPD markers. Biol Plant 48:113–115

    Article  CAS  Google Scholar 

  • Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav SK, Singh B, Ahuja PS (2008) An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiol 28:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Kumar S, Ahuja PS (2009a) Differential expression of Histone H3 gene in tea (Camellia sinensis (L.) O. Kuntze) suggests its role in growing tissue. Mol Biol Rep 36:537–542

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009b) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genom 9:125–134

    Article  CAS  Google Scholar 

  • Singh K, Kumar S, Yadav SK, Ahuja PS (2009c) Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnol Rep 3:95–101

    Article  Google Scholar 

  • Singh K, Paul A, Kumar S, Ahuja PS (2009d) Cloning and differential expression of QM like protein homologue from tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep 36:921–927

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Dhiman B, Sharma C (2011) Characterization of a highly repetitive DNA sequence in Camellia sinensis (L.) O. Kuntze genome. J Biotech Res 3:78–83

    CAS  Google Scholar 

  • Sood A, Palni LMS, Sharma M, Rao DV, Chand G, Jain NK (1993) Micropropagation of tea using cotyledon culture and encapsulated somatic embryos. J Plant Crops 21:295–300

    Google Scholar 

  • Spedding DJ, Wilson AT (1964) Caffeine metabolism. Nature 204:73

    Article  CAS  PubMed  Google Scholar 

  • Su MH, Hsieh CF, Tsou CH (2009) The confirmation of Camellia formosensis (Theaceae) as an independent species based on DNA sequence analyses. Bot Stud 50:477–485

    CAS  Google Scholar 

  • Suganthi M, Arvinth S, Raj Kumar R (2012) Impact of osmotica and abscisic acid on direct somatic embryogenesis in tea. Int J Plant Res 2:22–27

    Article  Google Scholar 

  • SuXia X, Yuan Z, KaiLin G, Lei W, HongYu Y (2009) Cloning and expression analysis of a flavonol synthase gene from Camellia sinensis. Plant Physiol Commun. 45:1093–1097

    Google Scholar 

  • Takemoto M, Tanaka K (2001) Synthesis of optically active α-phenylpyridylmethanols by Camellia sinensis cell culture. J Mol Cat B Enzym 15:173–176

    Article  CAS  Google Scholar 

  • Takemoto M, Aoshima Y, Stoynov N, Kutney JP (2002) Establishment of Camellia sinensis cell culture with high peroxidase activity and oxidative coupling reaction of dibenzylbutanolides. Tetr Lett 43:6915–6917

    Article  CAS  Google Scholar 

  • Takeuchi A, Matsumoto S, Hayatsu M (1994) Chalcone synthase from Camellia sinensis isolation of the cDNAs and the organ-specific and sugar-responsive expression of the genes. Plant Cell Physiol 35:1011–1018

    CAS  PubMed  Google Scholar 

  • Tan L-Q, Wang L-Y, Wei K, Zhang C-C, Wu L-Y et al (2013) Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS ONE 8:e81611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka J, Taniguchi F (2002) Emphasized-RAPD (e-RAPD): A simple and efficient technique to make RAPD Bands clearer. Breed Sci 52:225–229

    Article  CAS  Google Scholar 

  • Tanaka JI, Yamaguchi S (1996) Use of RAPD markers for the identification of parentage of tea cultivars. Bull Nat Res Inst Veg Orna Plant Tea 9:31–36

    CAS  Google Scholar 

  • Tang S, Bin X, Wang L, Zhong Y (2006) Genetic diversity and population structure of yellow Camellia (Camellia nitidissima) in China as revealed by RAPD and AFLP markers. Biochem Genet 44:449–461

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Xu J, Wu Y, Li Y, Tang Q (2012) Effects of high concentration of chromium stress on physiological and biochemical characters and accumulation of chromium in tea plant (Camellia sinensis L.). Afr J Biotechnol 11:2248–2255

    Article  CAS  Google Scholar 

  • Taniguchi F, Tanaka J (2004) Characterization of genes for ammonium assimilation in Camellia sinensis. Proceedings of International Conference O-Cha (tea) Cult Sci. Shizuoka, Japan, pp 217–218

    Google Scholar 

  • Taniguchi F, Fukuoka H, Tanaka J (2012) Expressed sequence tags from organ-specific cDNA libraries of tea (Camellia sinensis) and polymorphisms and transferability of EST-SSRs across Camellia species. Breeding Sci 62:186–195

    Article  CAS  Google Scholar 

  • Taniguchi F, Kimura K, Saba T, Ogino A, Yamaguchi S, Tanaka J (2014) Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genet Genome 10:1555–1565

    Article  Google Scholar 

  • Tanikawa N, Onozaki T, Nakayama M, Shibata M (2008) PCR-RFLP analysis of chloroplast DNA variations in the atpI-atpH spacer region of the Genus Camellia. J Jap Soc Hort Sci 77:408–417

    Article  CAS  Google Scholar 

  • Thomas J, Vijayan D, Joshi SD, Joseph Lopez S, Raj Kumar R (2006) Genetic integrity of somaclonal variants in tea (Camellia sinensis (L.) O Kuntze) as revealed by inter simple sequence repeats. J Biotech 123:149–154

    Article  CAS  Google Scholar 

  • Tian M, Li JY, Ni S, Li XL (2008) Phylogenetic Study on Section Camellia Based on ITS Sequences Data. J Acta Hort Sinica 35:1685–1688

    CAS  Google Scholar 

  • Ueno S, Tsumura Y (2009) Development of microsatellite and amplicon length polymorphism markers for Camellia japonica L. from tea plant (Camellia sinensis) expressed sequence tags. Mol Ecol Resour 9:814–816

    Article  CAS  PubMed  Google Scholar 

  • Ueno S, Yoshimaru H, Tomaru N, Yamamoto S (1999) Development and characterization of microsatellite markers in Camellia japonica L. Mole Eco 8:335–336

    Article  CAS  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima. Japan. Mol Eco 9:647–656

    Article  CAS  Google Scholar 

  • Ujihara T, Taniguchi F, Tanaka J, Hayashi N (2011) Development of expressed sequence tag (EST)-based Cleaved Amplified Polymorphic Sequence (CAPS) markers of tea plant and their application to cultivar identification. J Agric Food Chem 59:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Panda SK (2004) Responses of Camellia sinensis to drought and rehydration. Biol Plantarum 48:597–600

    Article  Google Scholar 

  • Upadhyaya H, Dutta BK, Sahoo L, Panda SK (2012) Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze]. Amer J Plant Sci 3:443–460

    Article  CAS  Google Scholar 

  • Vasisht K, Sharma PD, Karan M, Rakesh D, Vyas S, Sethi S, Manktala R (2003) Study to promote the industrial exploitation of green tea poly-phenols in India. ICS-UNIDO, Italy, pp 15–22

    Google Scholar 

  • Vieitez AM (1994) Somatic embryogenesis in Camellia spp. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 235–276

    Google Scholar 

  • Vieitez AM, Barciela J (1990) Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tiss Org Cult 21:267–274

    Article  CAS  Google Scholar 

  • Vieitez AM, San-Jose C, Vieitez J, Ballester A (1991) Somatic embryogenesis from roots of Camellia japonica plantlets cultured in vitro. J Am Soc Hortic Sci 116:753–757

    CAS  Google Scholar 

  • Vijayan K, Tsou CH (2008) Technical report on the molecular phylogeny of Camellia with nr ITS: the need for high quality DNA and PCR amplification with Pfu-DNA polymerase. Bot Stud 49:177–188

    CAS  Google Scholar 

  • Vijayan K, Zhang WJ, Tsou CH (2009) Molecular taxonomy of Camellia (Theaceae) inferred from NRITS sequences. Amer J Bot 96:1348–1360

    Article  CAS  Google Scholar 

  • Vuylsteke D, Swennen R, Wilson GF, Langhe ED (1988) Phenotypic variation among in vitro propagated plantain (Musa sp. Cultivar ‘AAB’). Sci Hort 36:79–80

    Article  Google Scholar 

  • Wachira F (1990) Desirable tea plants: an overview of a search for markers. Tea 11:42–48

    Google Scholar 

  • Wachira F, Ogado J (1995) In vitro regeneration of Camellia sinensis (L.) O. Kuntze by somatic embryo. Plant Cell Rep 14:463–466

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38:201–210

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Powell W, Waugh R (1997) An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle specific STS. Hered 78:603–611

    Article  CAS  Google Scholar 

  • Wachira F, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea (Camellia sisnensis) germplasm revealed by RAPD and AFLP variation. J Hort Sci Biotech 76:557–563

    CAS  Google Scholar 

  • Wang BY, Ruan ZY (2012) Genetic diversity and differentiation in Camellia reticulata (Theaceae) polyploid complex revealed by ISSR and ploidy. Genet Mol Res 11:503–511

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang CX, Li YY, Jiang CJ, Yu YB (2005) Molecular cloning and sequence analysis on cDNA of cystatin gene from tea leaves. J Tea Sci 25:177–182

    CAS  Google Scholar 

  • Wang XP, Ma B, Qi GN, Tian H, Fang CU, Zhang ZC, Yin XM (2007) RAPD analysis on the genetic relationship of tea cultivars grown in Sichuan. J Acta Hort Sinica 34:242–244

    CAS  Google Scholar 

  • Wang X, Zhao L, Yao M, Chen L, Yuan Y (2008) Preliminary study on gene expression difference between normal leaves and albino leaves of Anji Baicha. J Tea Sci 28:50–55

    Google Scholar 

  • Wang L, Li X, Zhao Q, Jing S, Chen S, Yuan H (2009) Identification of genes induced in response to low-temperature treatment in tea leaves. Plant Mol Biol Rep 27:257–265

    Article  CAS  Google Scholar 

  • Wang XF, Zheng WH, Zheng HX, Xie QQ, Zheng HY, Tang H, Tao YL (2010) Optimization of RAPD-PCR reaction system for genetic relationships analysis of 15 camellia cultivars. Afr J Biotech 9:798–804

    CAS  Google Scholar 

  • Wang P, Su R, Zheng J, Cheng S, Zhu G (2011a) Molecular cloning and phylogenetic analysis of a novel BURP domain-containing gene from Camellia sinensis. Afr J Biotechnol 10:15470–15476

    CAS  Google Scholar 

  • Wang X, Yang Y, Ma C, Jin J, Ma J, Cao H (2011b) Cloning and expression analysis of cyclin gene (CsCYC1) of tea plant. Acta Botanica Boreali-Occidentalia Sinica 31:2365–2372

    CAS  Google Scholar 

  • Wang X, Ma C, Yang C, Yao M, Jin J (2011b) Cloning and expression analysis of auxin-repressed protein gene CsARP1 in tea plant (Camellia sinensis). J Nucl Agric Sci (CNKI:SUN:HNXB.0.2011-05-014)

  • Wang XF, Zheng HY, Zheng WH, Ao CQ, Jin HY, Zhao LH, Li N, Jia LR (2011d) RAPD-based genetic diversities and correlation with morphological traits in Camellia (Theaceae) cultivars in China. Genet Mol Res 10:849–859

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Song P, Li X, Su R, Wang H, Zhu G (2012a) Study on soluble expression of glutamate dehydrogenase from tea plant in Escherichia coli using fusion tags. Afr J Biotechnol 11:6241–6250

    Article  CAS  Google Scholar 

  • Wang Y, Jiang C, Li Y, Wei C, Deng W (2012b) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31:27–34

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Gao LP, Wang ZR, Liu YJ, Sun M, Zeng W, Yuan H (2012c) Light induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci Hort 133:72–83

    Article  CAS  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genome 14:415

    Article  CAS  Google Scholar 

  • Wei CL, Jiang CJ, Tao HZ, Wan XC (2003) Cloning and bioinformatics analysis of sequence signature of violaxanthin de-epoxidase cDNA in tea plant (Camellia sinensis (L.) O. Kuntze). J Nanjing Agric Univ 26:14–19

    CAS  Google Scholar 

  • Wei X, Wei JQ, Cao HL, Li F, Ye WH (2005) Genetic diversity and differentiation of Camellia euphlebia (Theaceae) in Guangxi, China. Ann Bot Fennici 42:365–370

    Google Scholar 

  • Wei X, Cao H-L, Jiang YS, Ye WH, Ge XJ, Ll F (2008) Population genetic structure of Camellia nitidissima (Theaceae) and conservation implications. Bot Stud 49:147–153

    Google Scholar 

  • Wei JQ, Chen ZY, Wang ZF, Tang H, Jiang YS, Wei X, Li XY, Qi XX (2010) Isolation and characterization of polymorphic microsatellite loci in Camellia nitidissima chi (Theaceae). Amer J Bot 97:89–90

    Article  CAS  Google Scholar 

  • Wen SC, Wu LJ, Peng SJ, Hua GZ, Ping TH, Zhi LF, Huan HY, Shen CW, Luo JW, Shi ZP, Gong ZH, Tang HP, Liu FZ, Huang YH (2002) Study on genetic polymorphism of tea plants in Anhua Yuntaishan population by RAPD. J Hunan Agri Univ 28:320–325

    Google Scholar 

  • Wen Q, Xu L, Gu Y, Huang M, Xu L (2012) Development of polymorphic microsatellite markers in Camellia chekiangoleosa (Theaceae) using 454-ESTs. Ame J Bot 99:203–205

    Article  Google Scholar 

  • Wight W (1959) Nomenclature and classification of tea plant. Nature 183:1726–1728

    Article  Google Scholar 

  • Wight W, Barua DN (1954) Morphological basis of quality in tea. Nature 173:630–631

    Article  Google Scholar 

  • Wright LP, Apostolides Z, Louw AI (1996) DNA fingerprinting of tea clones. In: Whittle AM, Khumalo FRB (eds) Proc of the 1st Regional Tea Research seminar. Blantyre, Malawi Mar 22-23, 1995, pp 44–50

  • Wu CT (1976) Studies on the tissue culture of tea plant. J Agric Assoc China 93:30–42

    Google Scholar 

  • Wu CT, Huang TK, Chen GR, Chen SY (1981) A review on the tissue culture of tea plants and on the utilization of callus derived plantlets In: Rao AN (ed) Tissue Culture of Economically Important Plants: Proceedings of Costed Symposium, Singapore, pp 104–106

  • Wu LJ, Peng SJ, Wen SC, Lin LC, Hua GZ, Huan HY, Luo JW, Shi ZP, Shen CW, Liu CL, Gong ZH, Huang YH (2002a) Studies on genetic relationships of tea cultivars [Camellia sinensis (L.) O. Kuntze] by RAPD analysis. J Tea Sci 22:140–146

    Google Scholar 

  • Wu LJ, Peng SZ, Xian Li J, Wen SC, Huan HY, Hua GZ, Luo JW, Shi ZP, Li JX, Shen CW, Huang YH, Gong ZH (2002b) Studies on genetic diversity of tea cultivars [Camellia sinensis (L.) O. Kuntze] by RAPD analysis. J Tea Sci 12:121–127

    Google Scholar 

  • Wu H, Chen D, Li J, Yu B, Qiao X, Huang H, He Y (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol Biol Rep 31:524–538

    Article  CAS  Google Scholar 

  • Xiao LZ, Yan CY, Li JX, Luo JW, He YM, Zhao CY (2007) AFLP analysis on genetic diversity of Fenghuang-Dancong tea plant germplasm. J Tea Sci 27:280–285

    CAS  Google Scholar 

  • Yadav SK, Mohanpuria P (2009) Responses of Camellia sinensis cultivars to Cu and Al stress. Biol Plant 53:737–740

    Article  CAS  Google Scholar 

  • Yamaguchi S, Kunitake T, Hisatomi S (1987) Interspecific hybrid between Camellia japonica cv. choclidori and C. chrysantha produced by embryo culture. Jpn J Breed 37:203–206

    Article  Google Scholar 

  • Yan MQ, Ping C (1983) Studies on development of embryoids from the culture cotyledons of Thea sinensis L. Sci Silv Sin 19:25–29

    Google Scholar 

  • Yan MQ, Ping C, Wei M, Wang YH (1984) Tissue culture and transplanting of Camellia oleifera. Sci Silvae Sin 20:341–350

    Google Scholar 

  • Yang YJ, Yu FL, Chen L, Zeng JM, Yang SJ, Li SF, Shu AM, Zhang ZF, Wang YS, Wang HS, Wang PS, Xu M, Song WX, Guo JC, Yang RX, Zhang WJ, Chen ZH, Yang YJ, Yu FL, Chen L, Zeng JM, Yang SJ, Li SF, Shu AM, Zhang ZF, Wang YS, Wang HS, Wang PS, Xu M, Song WX, Guo JC, Yang RX, Zhang WJ, Chen ZH (2003) Elite germplasm evaluation and genetic stability of tea plants. J Tea Sci 23:1–8

    Google Scholar 

  • Yang H, Xie S, Wang L, Jing S, Zhu X, Li X, Zeng W, Yuan H (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic 130:448–476

    Google Scholar 

  • Yang YJ, Wang XC, Ma CL (2012) Cloning and bioinformatics analysis of full-length cDNA of actin gene (CsActin1) from tea plant (Camellia sinensis (L.) O. Kuntze). Bull Bot Res 32:69–76

    CAS  Google Scholar 

  • Yao MZ, Chen L, Liang YR (2008) Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding prog. Plant Breed 127:166–172

    Article  CAS  Google Scholar 

  • Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L (2012) Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet Genom 8:205–220

    Article  Google Scholar 

  • Ye Y, Jiang CJ, Zhu L, Yu M, Wang ZX, Deng WW, Wei CL (2009) Cloning and sequencing of a full length cDNA encoding the RuBPCase small subunit (RbcS) in tea (Camellia sinensis). Agric Sci China 8:161–166

    Article  CAS  Google Scholar 

  • Yu M, Jiang C, Fang W (2008) Cloning and analysis of differential expression of a 14-3-3 protein gene from tea flower bud. Sci Agric Sinica 41:2983–2991

    CAS  Google Scholar 

  • Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA (2003) Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russ J Plant Physiol 50:270–275

    Article  CAS  Google Scholar 

  • Zagoskina NV, Alyavina AK, Gladyshko TO, Lapshin PV, Egorova EA, Bukhov NG (2005) Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis). Russ J Plant Physiol 52:731–739

    Article  CAS  Google Scholar 

  • Zagoskina NV, Goncharuk EA, Alyavina AK (2007a) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ J Plant Physiol 54:237–243

    Article  CAS  Google Scholar 

  • Zagoskina NV, Pinaev AS, Alyavina AK, Yamburenko MV, Gladyshko TO, Kuznetsov VV, Fattakhov SG, Konovalov AI (2007b) Activation of growth and accumulation of phenolic compounds in tea callus culture by melafen is not associated with its possible cytokinin activity. Biochem Biophys Mol Biol 413:88–91

    CAS  Google Scholar 

  • Zaprometov MN, Zagoskina MV (1979) One more evidence for chloroplast involvement in the biosynthesis of phenolic compounds. Plant Physiol (Russ) 34:165–172

    Google Scholar 

  • Zaprometov MN, Zagoskina MV (1987) Regulation of phenolic compounds formation in cultured cells of tea plant (Camellia sinensis). In: Proc Inter Tea Quality Human Health Symp China, pp 62–65

  • Zaveri NT (2006) Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080

    Article  CAS  PubMed  Google Scholar 

  • Zhang YP, Li JH (2003a) RAPD analysis of tea trees in Yunnan. Sci Agri Sin 36:1582–1587

    Google Scholar 

  • Zhang YP, Li JH (2003b) Use RAPD analysis to classify tea trees in Yunnan. Agri Sci China 2:1290–1296

    Google Scholar 

  • Zhang GW, Zhong WB, Wu Y, Tan XF, Du TZ (2007a) Identification of oil tea (Camellia Oleifera) superior clones by ISSR molecular marker. Forest Res 20:278–282

    Google Scholar 

  • Zhang YL, Zhao LP, Ma CL, Chen L (2007b) Molecular identification, bioinformatic analysis and prokaryotic expression of the cyclophilin gene full-length cDNA from tea plant (Camellia sinensis). J Tea Sci 27:120–126

    CAS  Google Scholar 

  • Zhang YL, Qiao XY, Chen L (2008a) Full-length cDNA cloning and bioinformatic analysis of ACC synthase gene from the tea plant (Camellia sinensis). J Tea Sci 28:235–241

    Google Scholar 

  • Zhang YL, Qiao XY, Chen L (2008b) Molecular cloning and expression analysis of ACC oxidase gene full-length cDNA from the tea plant (Camellia sinensis). J Tea Sci 28:459–466

    Google Scholar 

  • Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao D, Liu ZS, Xi B (2001) Cloning and alignment of polyphenols oxidase cDNA of tea plant. J Tea Sci 21:94–98

    CAS  Google Scholar 

  • Zhao CY, Zhou LH, Luo JW, Huang JA, Tan HP (2006) AFLP analysis of genetic diversity of tea plant germplasm in Guangdong province. J Tea Sci 26:249–252

    CAS  Google Scholar 

  • Zhao LP, Liu Z, Chen L, Yao MZ, Wang XC (2008) Generation and characterization of 24 novel EST derived microsatellites from tea plant (Camellia sinensis) and cross-species amplification in its closely related species and varieties. Conserv Genet 9:1327–1331

    Article  CAS  Google Scholar 

  • Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, Jia S, Li Y, Ding Z (2015) Integrated RNA-Seq and sRNA-Seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS ONE 10:e0125031

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:14029

    Article  CAS  Google Scholar 

  • Zhu QW, Luo YP (2013) Identification of miRNAs and their targets in tea (Camellia sinensis). J Zhejiang Univ Sci B 14:916–923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu L, Deng WW, Ye AH, Yu M, Wang ZX, Jiang CJ (2008a) Cloning of two cDNAs encoding a family of ATP sulfurylase from Camellia sinensis related to selenium or sulfur metabolism and functional expression in Escherichia coli. Plant Physiol Biochem 46:731–738

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Jiang CJ, Deng WW, Gao X, Wang RJ, Wan XC (2008b) Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis. Acta Physiol Planta 30:167–174

    Article  CAS  Google Scholar 

  • Zhuang C, Liang H (1985a) In vitro embryoid formation of Camellia reticulata L. Acta Biol Exp Sin 18:275–281

    CAS  Google Scholar 

  • Zhuang C, Liang H (1985b) Somatic embryogenesis and plantlet formation in cotyledon culture of Camellia chrysantha. Acta Bot Yunn 7:446–450

    Google Scholar 

  • Zhuang C, Duan J, Zhou J (1988) Somatic embryogenesis and plantlets regeneration of Camellia sasanqua. Acta Bot Yunn 10:241–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep K. Chand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, M., Mondal, T.K. & Chand, P.K. Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 35, 255–287 (2016). https://doi.org/10.1007/s00299-015-1884-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1884-8

Keywords

Navigation