Skip to main content

Advertisement

Log in

A metabolomics approach shows that catechin-enriched green tea attenuates ultraviolet B-induced skin metabolite alterations in mice

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In this study, catechin-enriched green tea (CGT) administration significantly attenuated ultraviolet (UV) B-induced mouse skin alterations, i.e., increases in wrinkle formation, thickness, erythema, and transepidermal water loss, and decreases in hydration, elasticity, and collagen fiber content. The metabolites in the mouse skin after UVB irradiation and CGT administration were profiled using comprehensive MS-based metabolomics techniques such as ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (TOF-MS), gas chromatography-TOF-MS, and NanoMate tandem-MS. From these analysis, we revel that Normal, UVB-irradiated, and UVB-irradiated with CGT administrated groups clearly discriminated from each other in partial least squares-discriminant analysis models, and CGT administration attenuated UVB-induced alteration of skin metabolites such as lysophospholipids, fatty acids, ceramides, amino acids, organic compounds, lipids, and nucleobases. Among them, purine nucleobases (inosine and hypoxanthine), ascorbic acid, and lactose were remarkably influenced by CGT administration, which indicated that these metabolites could be biomarkers to explain CGT effects on UVB-irradiated skin. Our results suggested that CGT administration was effective in reducing the levels of UVB-induced alterations of numerous mouse skin metabolites, and these metabolites were might highly relevant to observed changes in skin conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arakaki, A. K., Skolnick, J., & McDonald, J. F. (2008). Marker metabolites can be therapeutic targets as well. Nature, 456, 443.

    Article  CAS  PubMed  Google Scholar 

  • Bae, J. Y., Choi, J. S., Choi, Y. J., et al. (2008). (−)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: Involvement of mitogen-activated protein kinase. Food and Chemical Toxicology, 46, 1298–1307.

    Article  CAS  PubMed  Google Scholar 

  • Bae, J. Y., Choi, J. S., Kang, S. W., Lee, Y. J., Park, J., & Kang, Y. H. (2010). Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Experimental Dermatology, 19, e182–e190.

    Article  PubMed  Google Scholar 

  • Bertin, C., Zunino, H., Lanctin, M., et al. (2008). Combined retinol-lactose-glycolic acid effects on photoaged skin: A double-blind placebo-controlled study. International Journal of Cosmetic Science, 30, 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Brenneisen, P., Sies, H., & Scharffetter-Kochanek, K. (2002). Ultraviolet-B irradiation and matrix metalloproteinases: From induction via signaling to initial events. Annals of the New York Academy of Sciences, 973, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Calder, P. C. (2011). Fatty acids and inflammation: The cutting edge between food and pharma. European Journal of Pharmacology, 668, s50–s58.

    Article  CAS  PubMed  Google Scholar 

  • Chan, A. C. (1993). Partners in defense, vitamin E and vitamin C. Canadian Journal of Physiology and Pharmacology, 71, 725–731.

    Article  CAS  PubMed  Google Scholar 

  • Feingold, K. R. (2007). The role of epidermal lipids in cutaneous permeability barrier homeostasis. The Journal of Lipid Research, 48, 2531–2546.

    Article  CAS  Google Scholar 

  • Huang, S. M., Chang, Y. H., Chao, Y. C., & Lin, J. A. (2013). EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A 12-RAGE axis through ADAM1-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes. Molecular Nutrition & Food Research, 57, 2264–2268.

    Article  CAS  Google Scholar 

  • Jeon, S. E., Choi-Kwon, S., Park, K. A., et al. (2003). Dietary supplementation of (+)-catechin protects against UVB-induced skin damage by modulating antioxidant enzyme activities. Photodermatology, Photoimmunology and Photomedicine, 19, 235–241.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, H. Y., Kim, J. K., Kim, W. G., & Lee, S. J. (2009). Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage. Skin Pharmacology and Physiology, 22, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Katagiri, C., Sato, J., Nomura, J., & Denda, M. (2003). Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. Journal of Dermatological Science, 31, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Katiyar, S. K., & Mukhtar, H. (2001). Green tea polyphenol (−)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress. Journal of Leukocyte Biology, 69, 719–726.

    CAS  PubMed  Google Scholar 

  • Kim, J., Choi, J. N., Choi, J. H., Cha, Y. S., Muthaiya, M. J., & Lee, C. H. (2013). Effect of fermented soybean product (Cheonggukjang) intake on metabolic parameters in mice fed a high-fat diet. Molecular Nutrition & Food Research, 57, 1886–1891.

    CAS  Google Scholar 

  • Kim, E. J., Jin, X. J., Kim, Y. K., et al. (2010). UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. Journal of Dermatological Science, 57, 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Kligman, L. H., Akin, F. J., & Kligman, A. M. (1985). The contributions of UVA and UVB to connective tissue damage in hairless mice. The Journal of Investigative Dermatology, 84, 272–276.

    Article  CAS  PubMed  Google Scholar 

  • Meeran, S. M., Akhtar, S., & Katiyar, S. K. (2009). Inhibition of UVB-induced skin tumor development by drinking green tea polyphenols is mediated through DNA repair and subsequent inhibition of inflammation. The Journal of Investigative Dermatology, 129, 1258–1270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meguro, S., Arai, Y., Masukawa, K., Uie, K., & Tokimitsu, I. (1999). Stratum corneum lipid abnormalities in UVB-irradiated skin. Photochemistry and Photobiology, 69, 317–321.

    Article  CAS  PubMed  Google Scholar 

  • Mukhtar, H., & Ahmad, N. (2000). Tea polyphenols: prevention of cancer and optimizing health. The American Journal of Clinical Nutrition, 71, S1698–S1702.

    Google Scholar 

  • Murad, S., Grove, D., Lindberg, K. A., Reynolds, G., Sivarajah, A., & Pinnell, S. R. (1981). Regulation of collagen synthesis by ascorbic acid. Proceedings of the National Academy of Sciences of the United States of America, 78, 2879–2882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagao, T., Hase, T., & Tokimitsu, I. (2007). A Green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity, 15, 1473–1483.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of Dermatological Research, 302, 71–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park, H. M., Shin, J. H., Kim, J. K., et al. (2014). MS-based metabolite profiling reveals time-dependent skin biomarkers in UVB-irradiated mice. Metabolomics, 10, 663–676.

    Article  CAS  Google Scholar 

  • Rawlings, A. V., & Harding, C. R. (2004). Moisturization and skin barrier function. Dermatologic Therapy, 17, 43–48.

    Article  PubMed  Google Scholar 

  • Ryborg, A. K., Deleuran, B., Sogaard, H., & Kragballe, K. (2000). Intracutaneous injection of lysophosphatidylcholine induces skin inflammation and accumulation of leukocytes. Acta Dermato-Venereologica, 80, 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Shin, J. H., Shon, J. C., Lee, K., et al. (2014). A lipidomic platform establishment for structural identification of skin ceramide with non-hydroxyacyl chains. Analytical and Bioanalytical Chemistry, 406, 1917–1932.

    Article  CAS  PubMed  Google Scholar 

  • Svobodova, A., Walterova, D., & Vostalova, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 150, 25–38.

    Article  CAS  PubMed  Google Scholar 

  • Vayalil, P. K., Mittal, A., Hara, Y., Elmets, C. A., & Katiyar, S. K. (2004). Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. Journal of Investigative Dermatology, 122, 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  • Wefers, H., Melnik, B. C., Flur, M., Bluhm, C., Lahmann, P., & Plewig, G. (1991). Influence of UV irradiation on the composition of human stratum corneum lipids. Journal of Investigative Dermatology, 96, 959–962.

    Article  CAS  PubMed  Google Scholar 

  • Yahagi, S., Koike, M., Okano, Y., & Masaki, H. (2011). Lysophospholipids improve skin moisturization by modulating of calcium-dependent cell differentiation pathway. International Journal of Cosmetic Science, 33, 251–256.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. S., Lambert, J. D., & Sang, S. (2009). Antioxidative and anti-carcinogenic activities of tea polyphenols. Archives of Toxicology, 83, 11–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, A., Sun, H., Wang, P., Han, Y., & Wang, X. (2012). Recent and potential development of biofluid analyses in metabolomics. Journal of Proteomics, 75, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Wang, S., Zhao, A., et al. (2012). Transcriptomic and metabonomic profiling reveal synergistic effects of Quercetin and Resveratrol supplementation in high fat diet fed mice. Journal of Proteome Research, 11, 4961–4971.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (Grant No.: HN13C0076) and of the Cooperative Research Program for Agricultural Science & Technology Development, Rural Department Administration, Republic of Korea. (No.: PJ 009826).

Conflict of interest

The all authors declared that they have no conflict of interest in the submission of this manuscript.

Compliance with Ethics Requirements

All procedures performed in studies involving animals were in accordance with ethical standards of the institution or practice at which the studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Kwan Hwang or Choong Hwan Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, E.S., Park, H.M., Lee, KE. et al. A metabolomics approach shows that catechin-enriched green tea attenuates ultraviolet B-induced skin metabolite alterations in mice. Metabolomics 11, 861–871 (2015). https://doi.org/10.1007/s11306-014-0743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0743-x

Keywords

Navigation