Skip to main content
Log in

Worldwide core collections of tea (Camellia sinensis) based on SSR markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tea (Camellia sinensis (L.) O. Kuntze) is the world’s most popular beverage crop. However, to date, no core collection has been selected from worldwide germplasm resources on the basis of genotype data. In this study, we analyzed 788 tea germplasm accessions using 23 simple sequence repeat (SSR) markers. Our population structure analysis divided the germplasms into a Japanese group and an exotic group. The latter could be divided into var. sinensis and var. assamica. The genetic diversity was higher in germplasms from China, Taiwan, India, and Sri Lanka than in those from other countries, and low in germplasms from Japan. Using the number of SSR alleles as a measure of genetic diversity, we developed a core collection consisting of 192 accessions and three subcore collections with 96, 48, and 24 accessions. Although the results might be affected by marker-selection bias, the core 192 collection adequately covered the range of variation of the 788 accessions in floral morphology, and the chemical composition of first-flush leaves. These collections will be powerful tools for breeding and genetic research in tea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Campana MG, Hunt HV, Jones H, White J (2011) CorrSieve: software for summarizing and evaluating Structure output. Mol Ecol Resour 11:349–352

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty R, Jin L (1993) Determination of relatedness between individuals using DNA fingerprinting. Hum Biol 65:875–895

    PubMed  CAS  Google Scholar 

  • Chen J, Wang PS, Xia YM, Xu M, Pei SJ (2005) Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genet Resour Crop Evol 52:41–52

    Article  CAS  Google Scholar 

  • Cockerham CC, Weir BS (1993) Estimation of gene flow from F-statistics. Evolution 47:855–863

    Article  Google Scholar 

  • Ercisli S (2012) The tea industry and improvement in Turkey. In: Chen L, Apostolides Z, Chen ZM (eds) Global tea breeding. Springer, Berlin, pp 309–321

    Chapter  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2640

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fang W, Cheng H, Duan Y, Jiang X, Li X (2012) Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst Evol 298:469–483

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 85:485–486

    Google Scholar 

  • Gunasekare MTK (2012) Tea plant (Camellia sinensis) breeding in Sri Lanka. In: Chen L, Apostolides Z, Chen ZM (eds) Global tea breeding. Springer, Berlin, pp 125–176

    Chapter  Google Scholar 

  • Hashimoto M (2001) The origin of the tea plant. In: Proceedings of 2001 International Conference on O-CHA (tea) Culture and Science (Session II). Shizuoka, Japan, pp J5–J7

  • Hashimoto M, Takashi S (1978) Morphological studies on the origin of the tea plant V, a proposal of one place of origin by cluster analysis. Jpn J Trop Agric 21:93–101

    Google Scholar 

  • Inazuka M, Tahira T, Hayashi K (1996) One-tube post-PCR fluorescent labeling of DNA fragments. Genome Res 6:551–557

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kamunya SM, Wachira FN, Pathak RS, Muoki RC, Sharma RK (2012) Tea improvement in Kenya. In: Chen L, Apostolides Z, Chen ZM (eds) Global tea breeding. Springer, Berlin, pp 177–226

    Chapter  Google Scholar 

  • Kaundun SS, Matsumoto S (2002) Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome 45:1041–1048

    Article  PubMed  CAS  Google Scholar 

  • Kaundun SS, Matsumoto S (2003) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet 106:375–383

    PubMed  CAS  Google Scholar 

  • Lai JA, Yang WC, Hsiao JY (2001) An assessment of genetic relationship in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot Bull Acad Sin 42:93–100

    CAS  Google Scholar 

  • Langella O (1999) Populations 1.2.31: a population genetic software. CNRS UPR9034. http://bioinformatics.org/populations/. Accessed 8 Jan 2014

  • Li HL (1983) The domestication of plants in China: ecogeographical considerations. In: Keightley DN (ed) The origins of Chinese civilization. University of California Press, New Jersey, pp 21–63

    Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Kiriiwa Y, Takeda Y (2002) Differentiation of Japanese green tea cultivars as revealed by RFLP analysis of phenylalanine ammonia-lyase DNA. Theor Appl Genet 104:998–1002

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ohsako T, Ohgushi T, Motosugi H, Oka K (2008) Microsatellite variability within and among local landrace populations of tea, Camellia sinensis (L.) O. Kuntze, in Kyoto, Japan. Genet Resour Crop Evol 55:1047–1053

    Article  Google Scholar 

  • Peakall R, Smouse P (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 82:2537–2539

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  PubMed Central  Google Scholar 

  • Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P, Negi R, Sharma V, Singh SS, Sud RK, Kalia RK et al (2012) Genetic structure and diversity of India hybrid tea. Genet Resour Crop Evol 59:1527–1541

    Article  CAS  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Takeda Y (2002) Studies on variations in genetic resources of tea in Japan and application to tea breeding. Bull Natl Inst Veg Tea Sci 1:97–180

    CAS  Google Scholar 

  • Takeda Y, Toyao T (1980) Identification and classification of the green tea varieties by the morphological characters of flower organs. Tea Res J 52:1–6

    Article  Google Scholar 

  • Tanaka J (2012) Japanese tea breeding history and the future perspective. In: Chen L, Apostolides Z, Chen ZM (eds) Global tea breeding. Springer, Berlin, pp 227–239

    Chapter  Google Scholar 

  • Tanaka J, Ikeda S (2002) Rapid and efficient DNA extraction method from various plant species using diatomaceous earth and a spin filter. Breed Sci 52:151–155

  • Tanaka J, Sawai Y (2005) Mat locus control the existence of an aromatic substance methyl anthranilate in tea leaves, derived from clonal strain ‘Shizu-Inzatsu 131’. In: Res. Results of Veg. & Tea Sci., National Agricultural and Bio-oriented Research Organization, Tsukuba, Japan, 75–76 (in Japanese)

  • Taniguchi F, Yoshida K, Tanaka J, Ogino A (2010) Identification of quantitative trait loci for resistance to anthracnose in the tea cultivar ‘Minamisayaka’ using an SSR-based linkage map. In: Proceedings of 2010 International Conference on O-CHA (tea) Culture and Science (Session II). Shizuoka, Japan, pr-p-04

  • Taniguchi F, Furukawa K, Ohta-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci 62:263–273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Toyao T, Takeda Y (1999) Studies on geographical diversity of floral morphology of tea plant (Camellia sinensis (L.) O. Kuntze) using the method of numerical taxonomy. Tea Res J 87:39–57

    Article  Google Scholar 

  • Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sánchez GJ, Doebley J (2008) Population structure and genetic diversity of new world maize races assessed by DNA microsatellites. Am J Bot 95:1240–1253

    Article  PubMed  Google Scholar 

  • Wachira FN, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotechnol 76:557–563

    CAS  Google Scholar 

  • Wang XC, Chen L, Yang Y (2011) Establishment of core collection for Chinese tea germplasm based on cultivated region grouping and phenotypic data. Front Agric China 5:344–350

    Article  Google Scholar 

  • Yao MZ, Chen L, Liang YR (2008) Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programs. Plant Breed 127:166–172

    Article  CAS  Google Scholar 

  • Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L (2012) Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet Genomes 8:205–220

    Article  Google Scholar 

Download references

Acknowledgments

We thank R. Ohsawa at University of Tsukuba and N. Aoki at National Agriculture and Food Research Organization for their helpful comments on the manuscript. We also thank Y. Kuramae and M. Iwata at NARO Institute of Vegetable and Tea Science for their technical assistance.

Data archiving statement

We followed standard Tree Genetics and Genomes policy. All genotype data are deposited in the Dryad Repository doi:10.5061/dryad.5jn04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Tanaka.

Additional information

Communicated by Y. Tsumura

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(XLSX 34 kb)

Supplementary Table 2

(XLSX 10 kb)

Supplementary Table 3

(DOCX 21 kb)

Supplementary Table 4

(DOCX 19 kb)

Supplementary Table 5

(DOCX 67 kb)

Supplementary Fig. 1

DeltaK values and average maximum correlations in the structure result (PPT 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, F., Kimura, K., Saba, T. et al. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes 10, 1555–1565 (2014). https://doi.org/10.1007/s11295-014-0779-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0779-0

Keywords

Navigation