Skip to main content
Log in

Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-14C]adenine and [8-14C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NMT:

N-Methyltransferase

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

RT:

Reverse transcription

SAM:

S-Adenosyl-l-methionine

References

  • Ashihara H (1993) Purine metabolism and the biosynthesis of caffeine in mate leaves. Phytochemistry 33:1427–1430

    Article  CAS  Google Scholar 

  • Ashihara H, Crozier A (1999a) Biosynthesis and metabolism of caffeine and related purine alkaloids in plants. Adv Bot Res 30:117–205

    Article  CAS  Google Scholar 

  • Ashihara H, Crozier A (1999b) Biosynthesis and catabolism of caffeine in low-caffeine-containing species of Coffea. J Agric Food Chem 47:3425–3431

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Kubota H (1987) Biosynthesis of purine alkaloids in Camellia plants. Plant Cell Physiol 28:535–539

    CAS  Google Scholar 

  • Ashihara H, Monterio AM, Gillies FM, Crozier A (1996) Biosynthesis of caffeine in leaves of coffee. Plant Physiol 111:747–753

    PubMed  CAS  Google Scholar 

  • Ashihara H, Gillies FM, Croizer A (1997) Metabolism of caffeine and related purine alkaloids in leaves of tea (Camellia sinensis L.). Plant Cell Physiol 38:413–419

    CAS  Google Scholar 

  • Ashihara H, Kato M, Chuang-xing Y (1998) Biosynthesis and metabolism of purine alkaloids in leaves of cocoa tea (Camellia ptilophylla). J Plant Res 111:599–604

    Article  CAS  Google Scholar 

  • Chang H, Bartholomew TB (1984) Camellias. Timber Press, Portland

    Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolation of RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2003) The SABATH family of MTs in Arabidopsis thaliana and other plant species. In: Romeo JT (ed) Recent advances in phytochemistry, vol 37. Elsevier Science, Oxford, pp 253–283

    Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  PubMed  CAS  Google Scholar 

  • Fujimori N, Ashihara H (1990) Adenine metabolism and the synthesis of purine alkaloids in flowers of Camellia. Phytochemistry 29:3513–3516

    Article  CAS  Google Scholar 

  • Fujimori N, Suzuki T, Ashihara H (1991) Seasonal variations in biosynthetic capacity for the synthesis of caffeine in tea leaves. Phytochemistry 30:2245–2248

    Article  CAS  Google Scholar 

  • Fukami H, Asakura T, Hirano H, Abe L, Shimomura K, Yamakawa T (2002) Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogenously added salicylic acid. Plant Cell Physiol 43:1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl-l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  PubMed  CAS  Google Scholar 

  • Kato M (2001) Biochemistry and molecular biology in caffeine biosynthesis—molecular cloning and gene expression of caffeine synthase. Proc. 2001 international conference on O-CHA (tea). Culture and Science II:21–24

  • Kato M, Mizuno K (2004) Caffeine synthase and related methyltransferases in plants. Front Biosci 9:1833–1842

    Article  CAS  Google Scholar 

  • Kato M, Kanehara T, Shimizu H, Suzuki Gillies FM, Crozier A, Ashihara H (1996) Caffeine biosynthesis in young leaves of Camellia sinensis: in vitro studies on N-methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiol Plant 98:629–636

    Article  CAS  Google Scholar 

  • Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, Crozier A, Ashihara H (1999) Purification and characterization of caffeine synthase from tea leaves. Plant Physiol 120:579–586

    Article  PubMed  CAS  Google Scholar 

  • Kato M, Mizuno K, Crozier A, Fujimura T, Ashihara H (2000) Caffeine synthase gene from tea leaves. Nature 406:956–957

    Article  PubMed  CAS  Google Scholar 

  • Koyama Y, Tomoda Y, Kato M, Ashihara H (2003) Metabolism of purine bases, nucleosides and alkaloids in theobromine-forming Theobroma cacao leaves. Plant Physiol Biochem 41:977–984

    Article  CAS  Google Scholar 

  • McCarthy AA, McCarthy JG (2007) The structure of two N-methyltransferases from the caffeine biosynthetic pathway. Plant Physiol 144:879–889

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Tanaka H, Kato M, Ashihara A, Fujimura T (2001) cDNA cloning of caffeine (theobromine) synthases from coffee (Coffea arabica L.). In: International Scientific Colloquium on Coffee. ASIC, Paris, pp 815–818

  • Mizuno K, Okuda A, Kato M, Yoneyama N, Tanaka H, Ashihara A, Fujimura T (2003a) Isolation of a new dual-functional caffeine synthases gene encoding an enzyme for the conversion of 7-methylxanthosine to caffeine from coffee (Coffea arabica L.). FEBS Lett 534:75–81

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Kato M, Irino F, Yoneyama N, Fujimura T, Ashihara H (2003b) The first committed step reaction of caffeine biosynthesis: 7-methylxanthosine synthase is closely homologous to caffeine synthases in coffee (Coffea arabica L.). FEBS Lett 547:56–60

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Sakai S (1984) Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species of Camellia. Jpn J Breed 34:459–467

    CAS  Google Scholar 

  • Negre F, Kolosova N, Knoll J, Kish CM, Dudareva N (2002) Novel S-adenosyl-l-methionine: salicylic acid carboxyl methyltransferase, an enzyme responsible for biosynthesis of methyl salicylate and methyl benzoate, is not involved in floral scent production in snapdragon flowers. Arch Biochem Biophys 406:261–270

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Herai Y, Koizumi N, Kusano T, Sano H (2001) 7-Methylxanthine methyltransferase of coffee plants. J Biol Chem 276:8213–8218

    Article  PubMed  CAS  Google Scholar 

  • Ross JR, Nam KH, D’Auria JC, Pichersky E (1999) S-Adenosyl-l-methionine:salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch Biochem Biophys 367:9–16

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Pro Natl Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  • Sealy JR (1958) A revision of the genus Camellia. Royal Horticultural Society, London

    Google Scholar 

  • Seo HS, Song JT, Lee YH, Iwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T (1972) The participation of S-adenosylmethionine in the biosynthesis of caffeine in the tea plants. FEBS Lett 24:18–20

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H (2003) Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol 132:372–380

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Yuan JS, Ross J, Noel JP, Pichersky E, Chen F (2006) An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid. Arch Biochem Biophys 448:123–132

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama N, Morimoto H, Ye C, Ashihara H, Mizuno K, Kato M (2006) Substrate specificity of N-methyltransferase involved in purine alkaloids synthesis is dependent upon one amino acid residue of the enzyme. Mol Genet Genomics 275:125–135

    Article  PubMed  CAS  Google Scholar 

  • Zhao N, Ferrer J-L, Ross J, Guan J, Yang Y, Pichersky E, Noel JP, Chen F (2008) Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol 146:455–467

    Article  PubMed  CAS  Google Scholar 

  • Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Botanical Gardens, Graduate School of Science, The University of Tokyo for suppling C. chrysantha. We also thank Ms. Y. Yoshida (Tokyo Metropolitan Agriculture and Forestry Research Center) for supplying C. sinensis. This work is supported by a Sasagawa Scientific Research Grant from the Japan Science Society (M.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misako Kato.

Additional information

The nucleotide sequence data reported here have been deposited in the GenBank database under the accession numbers AB297451 (CjCS1), AB362882 (CgCS1), AB362883 (CgCS2), AB362884 (CkCS1), AB362885 (ClCS1), and AB362886 (CcCS2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, M., Kitao, N., Mizuno, K. et al. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants. Planta 229, 559–568 (2009). https://doi.org/10.1007/s00425-008-0847-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0847-5

Keywords

Navigation