Skip to main content
Log in

Identification of Differentially Expressed Gene Profiles in Young Roots of Tea [Camellia sinensis (L.) O. Kuntze] Subjected to Drought Stress Using Suppression Subtractive Hybridization

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Drought is an important abiotic stress that limits the production of tea in different regions of the world. Young roots of tea are responsible for nutrient and water uptake; hence, they are the first tissues to perceive drought stress. In this study, a forward suppression subtractive hybridization library was constructed from the tender roots of drought-tolerant tea (Camellia sinensis (L.) O. Kuntze) cultivar (TV-23) subjected to 21 days of drought stress. A total of 572 quality expressed sequence tags were generated by sequencing of 1,052 random clones which have resulted to 246 unigenes comprising 54 contigs and 192 singlets. The unigenes were assigned to various functional categories, i.e. cellular components, biological processes and molecular functions as defined for the Arabidopsis proteome. There were 13.04% of differentially regulated genes that have been associated to various stresses. A total of 123 putative drought-responsive genes were identified which include candidate genes of ubiquitin-proteasome, glutathione metabolism and sugar metabolism pathways and several transcription factors. In order to determine the possible expression, 10 genes associated to drought-responsive pathways were further analysed by reverse transcription polymerase chain reaction. This study provides a basis for studying the drought tolerance mechanism of this important commercial crop which will also be a valuable resource for the functional genomics study of woody plants in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ESTs:

Expressed sequence tags

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription polymerase chain reaction

SSH:

Suppression subtractive hybridization

HSPs:

Heat shock proteins

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) The gene ontology consortium. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  • Bargmann BOR, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  PubMed  CAS  Google Scholar 

  • Barr HD, Weatherley PE (1992) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Google Scholar 

  • Black CA (1965) Methods of soil analysis: part I physical and mineralogical properties. American Society Agronomy, Madison

    Google Scholar 

  • Carvalho MHC, Contour-Ansel D (2008) GR, beans and drought stress. Plant Signal Behav 3:834–835

    Article  Google Scholar 

  • Chatzidimitriadou K, Nianiou-Obeidat I, Madesis P, Perl-Treves R, Tsaftaris A (2009) Expression of SOD transgene in pepper confer stress tolerance and improve shoot regeneration. Electron J Biotechnol 12:1–9

    Google Scholar 

  • Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451

    Article  PubMed  CAS  Google Scholar 

  • Das A (2012) Generation and characterization of expressed sequence tags of tea (Camellia sinensis (L). O. Kuntze). PhD thesis, University of North Bengal, Siliguri, Darjeeling, India

  • Das A, Mondal TK (2010) Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). Am J Plant Sci 1:77–86

    Article  CAS  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, Korff MV, Varshney RK, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60:3531–3544

    Article  PubMed  CAS  Google Scholar 

  • Handique AC (1992) Some silent features in the study of drought resistance in tea. Two Bud 39:16–18

    Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci 35:12987–12992

    Article  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Jin X, Qin J, Wu T, Zhou X (2011) Identification of ethylene-responsive genes in ethrel-treated shoot apices of cucumber by suppression subtractive hybridization. Plant Mol Biol Rep 4:875–884. doi:10.1007/s11105-011-0304-7

    Article  Google Scholar 

  • Konwar BK (2004) Evaluation and development of planting material. In: Notes on tea management. Tea Research Association, Assam, India, pp 1–6

    Google Scholar 

  • Kosmas SA, Loukas AAMG, Eliopoulos E, Kaltsikes STPJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223:329–339

    Article  PubMed  CAS  Google Scholar 

  • Liu CC, Li CM, Liu BG, Ge SJ, Dong XM, Li W, Zhu HY, Wang BC, Yang CP (2011) Genome-wide identification and characterization of a dehydrin gene family in poplar (Populus trichocarpa). Plant Mol Biol Rep. doi:10.1007/s11105-011-0395-1

  • Mondal TK (2008) Tea breeding. In: Priyadarshan PM, Jain SM (eds) Tropical crops. Springer, Berlin, pp 547–587

    Google Scholar 

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advances in tea biotechnology. Plant Cell Tissue Organ Cult 75:795–856

    Google Scholar 

  • Munnik T, Meijer HJG (2001) Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Lett 498:172–178

    Article  PubMed  CAS  Google Scholar 

  • Neuefeind T, Reinemer P, Bieseler B (1997) Plant glutathione S-transferases and herbicide detoxification. Biol Chem 378:199–205

    PubMed  CAS  Google Scholar 

  • Park JS, Kim JB, Haha BS, Kim KH, Ha SH, Kim JB, Kim YH (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci 166:953–961

    Article  CAS  Google Scholar 

  • Ranty B, Aldon D, Galaud JP (2006) Plant calmodulins and calmodulin-related proteins. Plant Signal Behav 1:96–104

    Article  PubMed  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281

    Article  PubMed  CAS  Google Scholar 

  • Sahi CH, Singh A, Blumwaldb E, Grover A (2006) Beyond osmolytes and transporters: novel plant salt-stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9

    Article  CAS  Google Scholar 

  • Santos L (2006) Molecular mechanisms of the AAA proteins in plants. Adv Agril Food Biotechnol 37:1–15

    Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Sharma P, Kumar S (2005) Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [Camellia sinensis (L.) O. Kuntze]. J Biosci 30:231–235

    Article  PubMed  CAS  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131. doi:10.1186/1471-2164-12-131

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhua JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Stephen FA, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Talame V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240

    Article  PubMed  CAS  Google Scholar 

  • Torres-Franklin ML, Contour-Ansel D, Zuily-Fodil Y, Pham-Thi AT (2008) Molecular cloning of glutathione reductase cDNAs and analysis of GR gene expression in cowpea and common bean leaves during recovery from moderate drought stress. J Plant Physiol 165:514–521

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y et al (2004) Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Trujillo L, Menendez C, Ochogavia ME, Hernandez I, Borras O, Rodriguez R, Coll Y, Arrieta JG, Banguela A, Ramirez R, Hernandez L (2009) Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor. Biotechnologia Aplicada 26:168–171

    Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes unlock the future. Curr Opin Biotechnol 17:113–122

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH (2010) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62:2899–2914

    Article  Google Scholar 

  • Wang L, Li X, Zhao Q, Jing S, Chen S, Yuan H (2009) Identification of genes induced in response to low-temperature treatment in tea leaves. Plant Mol Biol Rep 27:257–265

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183. doi:org/cgi/doi/10.1105/tpc.000596

    PubMed  CAS  Google Scholar 

  • Xu GY, Rocha PSCF, Wang ML, Xu ML, Li Luo-Ye, Zhu YX, Xia X (2011a) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  PubMed  CAS  Google Scholar 

  • Xu H, He X, Wang K, Chen L, Li K (2011b) Identification of early nitrate stress response genes in spinach roots by suppression subtractive hybridization. Plant Mol Biol Rep. doi:10.1007/s11105-011-0376-4

  • Xu HN, Li KZ, Yang FJ, Shi QH, Wang XF (2010) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37:3157–3163

    Article  PubMed  CAS  Google Scholar 

  • Xuxia W, Jie C, Bo W, Lijun L, Hui J, Diluo T, Dingxiang P (2011) Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of anthracnose-resistant ramie cultivar. Plant Mol Biol Rep. doi:10.1007/s11105-011-0376-4

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Zhang F, Yu Y, Zhang D, Zhao X, Wang W (2011) Transcriptome profiling of dehydration stress in the Chinese cabbage (Brassica rapa L. ssp. pekinensis) by tag sequencing. Plant Mol Biol Rep. doi:10.1007/s11105-011-0313-6

  • Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y, Wang G (2007) Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics 90:121–131

    Article  PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Swapan Kumar Ghosh of Uttar Banga Krishi Viswavidyalaya for encouraging us in pursuing the work and Dr. Mridul Hazarika, Director, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam (India) for providing us the sequencing facility. We also thank Mr. Kamal Das for his technical help. The work was funded by the Department of Biotechnology, Govt. of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 194 kb)

ESM 2

(XLS 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., Das, S. & Mondal, T.K. Identification of Differentially Expressed Gene Profiles in Young Roots of Tea [Camellia sinensis (L.) O. Kuntze] Subjected to Drought Stress Using Suppression Subtractive Hybridization. Plant Mol Biol Rep 30, 1088–1101 (2012). https://doi.org/10.1007/s11105-012-0422-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0422-x

Keywords

Navigation