Skip to main content

Advertisement

Log in

Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

FK506 production by a mutant strain (Streptomyces sp. RM7011) induced by N-methyl-N′-nitro-N-nitrosoguanidine and ultraviolet mutagenesis was improved by 11.63-fold (94.24 mg/l) compared to that of the wild-type strain. Among three different metabolic pathways involved in the biosynthesis of methylmalonyl-CoA, only expression of propionyl-CoA carboxylase (PCC) pathway led to a 1.75-fold and 2.5-fold increase in FK506 production and the methylmalonyl-CoA pool, respectively, compared to those of the RM7011 strain. Lipase activity of the high FK506 producer mutant increased in direct proportion to the increase in FK506 yield, from low detection level up to 43.1 U/ml (12.6-fold). The level of specific FK506 production and lipase activity was improved by enhancing the supply of lipase inducers. This improvement was approximately 1.88-fold (71.5 mg/g) with the supplementation of 5 mM Tween 80, which is the probable effective stimulator in lipase production, to the R2YE medium. When 5 mM vinyl propionate was added as a precursor for PCC pathway to R2YE medium, the specific production of FK506 increased approximately 1.9-fold (71.61 mg/g) compared to that under the non-supplemented condition. Moreover, in the presence of 5 mM Tween 80, the specific FK506 production was approximately 2.2-fold (157.44 mg/g) higher than that when only vinyl propionate was added to the R2YE medium. In particular, PCC expression in Streptomyces sp. RM7011 (RM7011/pSJ1003) together with vinyl propionate feeding resulted in an increase in the FK506 titer to as much as 1.6-fold (251.9 mg/g) compared with that in RM7011/pSE34 in R2YE medium with 5 mM Tween 80 supplementation, indicating that the vinyl propionate is more catabolized to propionate by stimulated lipase activity on Tween 80, that propionyl-CoA yielded from propionate generates methylmalonyl-CoA, and that the PCC pathway plays a key role in increasing the methylmalonyl-CoA pool for FK506 biosynthesis in RM7011 strain. Overall, these results show that a combined approach involving classical random mutation and metabolic engineering can be applied to supply the limiting factor for FK506 biosynthesis, and vinyl propionate could be successfully used as a precursor of important methylmalonyl-CoA building blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbass RN (2000) Genetical studies for rifamycin antibiotic over-production in Amycolatopseis mediteranei. Dissertation. Ain Shams University, Cairo

  • August PR, Tang L, Yoon YJ, Ning S, Müller R, Yu TW, Taylor M, Hoffmann D, Kim CG, Zhang X, Hutchinson CR, Floss HG (1998) Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem Biol 5:69–79

  • Baltz RH (1986a) Mutagenesis in Streptomyces. In: Demain AL, Soloman NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, pp 184–190

    Google Scholar 

  • Baltz RH (1986b) Mutagenesis in Streptomyces. In: Queener SW, Day LE (eds) The bacteria, vol 9, Antibiotics-producing Streptomyces. Academic, New York, pp 61–93

    Google Scholar 

  • Baltz RH (1999) Mutagenesis. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: Fermentation, biocatalysis, and separation. Wiley, New York, pp 1819–1822

    Google Scholar 

  • Baltz RH, Stonesifer J (1985a) Adaptive response and enhancement of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis by chloramphenicol in Streptomyces fradiae. J Bacteriol 164:944–946

    Google Scholar 

  • Baltz RH, Stonesifer J (1985b) Mutagenic and error-free DNA repair in Streptomyces. Mol Gen Genet 200:351–355

    Article  CAS  Google Scholar 

  • Bao W, Sheldon PJ, Wendt-Pienkowski E, Hutchinson CR (1999) The Streptomyces peucetius dpsC gene determines the choice of starter unit in biosynthesis of the daunorubicin polyketide. J Bacteriol 181:4690–4695

    CAS  Google Scholar 

  • Borodina I, Krabben P, Nielsen J (2005) Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 15:820–829

    Article  CAS  Google Scholar 

  • Cameron DC, Tong IT (1993) Cellular and metabolic engineering. Appl Biochem Biotechnol 38:105–140

    Article  CAS  Google Scholar 

  • Chahinian H, Nini L, Boitard E, Dubès JP, Comeau LC, Sarda L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662

    Article  CAS  Google Scholar 

  • Chen X, Wei P, Fan L, Yang D, Zhu X, Shen W, Xu Z, Cen P (2009) Generation of high-yield rapamycin-producing strains through protoplasts-related techniques. Appl Microbiol Biotechnol 83:507–512

    Article  CAS  Google Scholar 

  • Chen Y, Smanski MJ, Shen B (2010) Improvement of secondary metabolite production in Streptomyces by manipulating pathway regulation. Appl Microbiol Biotechnol 86:19–25

    Article  CAS  Google Scholar 

  • Cheng YR, Huang J, Qiang H, Lin WL, Demain AL (2001) Mutagenesis of the rapamycin producer Streptomyces hygroscopicus FC904. J Antibiot (Tokyo) 54:967–972

    Article  CAS  Google Scholar 

  • Delić V, Hopwood DA, Friend EJ (1970) Mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat Res 9:167–182

    Article  Google Scholar 

  • Gold BG (2000) Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opin Investig Drugs 9:2331–2342

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546

    Article  CAS  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    Article  CAS  Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  CAS  Google Scholar 

  • Hopwood DA, Bibb MJ, Chater KF, Keiser T, Bruton CJ, Keiser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Institute Foundation, Norwich

    Google Scholar 

  • Horswill AR, Escalante-Semerena JC (1999) The prep gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthase. Microbiology 145:1381–1388

    Article  CAS  Google Scholar 

  • Iwasa T, Yamamoto H, Shibata M (1970) Studies on validamycins, new antibiotic, Streptomyces hygroscopicus var. limoneus nov. var., valdamycin producing organism. J Antibiot (Tokyo) 12:596–602

    Google Scholar 

  • Jung S, Moon S, Lee K, Park YJ, Yoon S, Yoo YJ (2009) Strain development of Streptomyces sp. for tacrolimus production using sequential adaptation. J Ind Microbiol Biotechnol 36:1467–1471

    Article  CAS  Google Scholar 

  • Jung WS, Yoo YJ, Park JW, Park SR, Han AR, Ban YH, Kim EJ, Kim E, Yoon YJ (2011) A combined approach of classical mutagenesis and rational metabolic engineering improves rapamycin biosynthesis and provides insights into methylmalonyl-CoA precursor supply pathway in Streptomyces hygroscopicus ATCC 29253. Appl Microbiol Biotechnol 91:1389–1397

    Article  CAS  Google Scholar 

  • Khaliq S, Akhtar K, Afzal Ghauri M, Iqbal R, Mukhtar Khalid A, Muddassar M (2009) Change in colony morphology and kinetics of tylosin production after UV and gamma irradiation mutagenesis of Streptomyces fradiae NRRL-2702. Microbiol Res 164:469–477

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kim HS, Park YI (2007) Lipase activity and tacrolimus production in Streptomyces clavuligerus CKD 1119 mutant strains. J Microbiol Biotechnol 17:1638–1644

    CAS  Google Scholar 

  • Kino T, Hatanaka H, Hashimoto M, Nishiyama M, Goto T, Okuhara M, Kohsaka M, Aoki H, Imanaka H (1987a) FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo) 40:1249–1255

    Article  CAS  Google Scholar 

  • Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, Goto T, Okuhara M, Kohsaka M, Aoki H, Ochiai T (1987b) FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot (Tokyo) 40:1256–1265

    Article  CAS  Google Scholar 

  • Kumar MS, Kumar PM, Sarnaik HM, Sadhukhan AK (2000) A rapid technique for screening of lovastatin-producing strains of Aspergillus terreus by agar plug and Neurospora crassa bioassay. J Microbiol Methods 40:99–104

    Article  CAS  Google Scholar 

  • Kumar P, Malviya HK, Maurya RK, Shukla A (2007) Fermentation processes for the preparation of tacrolimus. International publication patent no. WO2007/039816 A2

  • Lee SH, Rho YT (1999) Improvement of tylosin fermentation by mutation and medium optimization. Lett Appl Microbiol 28:142–144

    Article  Google Scholar 

  • Li C, Florova G, Akopiants K, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472

    Article  CAS  Google Scholar 

  • Locci R (1989) Streptomyces and related genera. In: Garrity G (ed) Bergey's manual of systematic bacteriology, vol 4. Williams & Wilkins Company, Baltimore, pp 2451–2508

    Google Scholar 

  • Lu Y, Lin F, Wang X, Bie X, Sun H, Wuyundalai LZ (2009) Identification of bacteria producing a thermophilic lipase with positional non-specificity and characterization of the lipase. Anal Microbiol 59:565–571

    Article  CAS  Google Scholar 

  • Marsden AF, Caffrey P, Aparicio JF, Loughran MS, Staunton J, Leadlay PF (1994) Stereospecific acyl transfers on the erythromycin-producing polyketide synthase. Science 263:378–380

    Article  CAS  Google Scholar 

  • Miller J (1983) Mutational specificity in bacteria. Annu Rev Genet 17:215–238

    Article  CAS  Google Scholar 

  • Mo S, Ban YH, Park JW, Yoo YJ, Yoon YJ (2009) Enhanced FK506 production in Streptomyces clavuligerus CKD1119 by engineering the supply of methylmalonyl-CoA precursor. J Ind Microbiol Biotechnol 36:1473–1482

    Article  CAS  Google Scholar 

  • Mo S, Kim DH, Lee JH, Park JW, Basnet DB, Ban YH, Yoo YJ, Chen SW, Park SR, Choi EA, Kim E, Jin YY, Lee SK, Park JY, Liu Y, Lee MO, Lee KS, Kim SJ, Kim D, Park BC, Lee SG, Kwon HJ, Suh JW, Moore BS, Lim SK, Yoon YJ (2011) Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J Am Chem Soc 133:976–985

    Article  CAS  Google Scholar 

  • Motamedi H, Shafiee A (1998) The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur J Biochem 256:528–534

    Article  CAS  Google Scholar 

  • Motamedi H, Cai SJ, Shafiee A, Elliston KO (1997) Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506. Eur J Biochem 244:74–80

    Article  CAS  Google Scholar 

  • Murli S, Kennedy J, Dayem LC, Carney JR, Kealey JT (2003) Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J Ind Microbiol Biotechnol 30:500–509

    Article  CAS  Google Scholar 

  • Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

    Article  CAS  Google Scholar 

  • Park JW, Jung WS, Park SR, Park BC, Yoon YJ (2007) Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry. J Mass Spectrom 42:1136–1147

    Article  CAS  Google Scholar 

  • Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6:300–312

    Article  CAS  Google Scholar 

  • Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 33:600–609

    Article  CAS  Google Scholar 

  • Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2007) Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 9:293–303

    Article  CAS  Google Scholar 

  • Reynolds KA, Demain AL (1997) Rapamycin, FK506 and ascomycin related compounds. In: Strohl WR (ed) Biotechnology of antibiotics, 2nd edn. Dekker, New York, p 497

    Google Scholar 

  • Rokem JS, Lantz AE, Nielsen J (2007) Systems biology of antibiotic production by microorganisms. Nat Prod Rep 24:1262–1287

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Sierra-Paredes G, Sierra-Marcuño G (2008) Ascomycin and FK506: pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci Ther 14:36–46

    Article  CAS  Google Scholar 

  • Smirnova N, Reynolds KA (2001) Branched-chain fatty acid biosynthesis in Escherichia coli. J Ind Microbiol Biotechnol 27:246–251

    Article  CAS  Google Scholar 

  • Xu ZN, Shen WH, Chen XY, Lin JP, Cen PL (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol Lett 27:1135–1140

    Article  CAS  Google Scholar 

  • Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci U S A 95:12111–12116

    Article  CAS  Google Scholar 

  • Zhu X, Zhang W, Chen X, Wu H, Duan Y, Xu Z (2010) Generation of high rapamycin producing strain via rational metabolic pathway-based mutagenesis and further titer improvement with fed-batch bioprocess optimization. Biotechnol Bioeng 107:506–515

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ008093 and PJ008333), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Won Suh.

Additional information

SangJoon Mo and Sung-Kwon Lee contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mo, S., Lee, SK., Jin, YY. et al. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011. Appl Microbiol Biotechnol 97, 3053–3062 (2013). https://doi.org/10.1007/s00253-012-4413-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4413-5

Keywords

Navigation