Skip to main content
Log in

Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea

  • Review
  • Published:
Journal of Industrial Microbiology and Biotechnology

Abstract

In carbohydrate-based fermentations of Saccharopolyspora erythraea, a polar knockout of the methylmalonyl-CoA mutase (MCM) gene, mutB, improved erythromycin production an average of 126% (within the range of 102–153% for a 0.95 confidence interval). In oil-based fermentations, where erythromycin production by the wild-type strain averages 184% higher (141–236%, 0.95 CI) than in carbohydrate-based fermentations, the same polar knockout in mutB surprisingly reduced erythromycin production by 66% (53–76%, 0.95 CI). A metabolic model is proposed where in carbohydrate-based fermentations MCM acts as a drain on the methylmalonyl-CoA metabolite pool, and in oil-based fermentations, MCM acts in the reverse direction to fill the methylmalonyl-CoA pool. Therefore, the model explains, in part, how the well-known oil-based process improvement for erythromycin production operates at the biochemical level; furthermore, it illustrates how the mutB erythromycin strain improvement mutation operates at the genetic level in carbohydrate-based fermentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Banerjee R, Vlasie M (2002) Controlling the reactivity of radical intermediates by coenzyme B(12)-dependent methylmalonyl-CoA mutase. Biochem Soc Trans 30:621–624

    Article  PubMed  CAS  Google Scholar 

  2. Bobik TA, Rasche ME (2001) Identification of the human methylmalonyl-CoA racemase gene based on the analysis of prokaryotic gene arrangements. Implications for decoding the human genome. J Biol Chem 276:37194–37198

    Article  PubMed  CAS  Google Scholar 

  3. Bramwell H, Hunter IS, Coggins JR, Nimmo HG (1996) Propionyl-CoA carboxylase from Streptomyces coelicolor A3(2): cloning of the gene encoding the biotin-containing subunit. Microbiology 142:649–655

    Article  PubMed  CAS  Google Scholar 

  4. Cropp A, Chen S, Liu H, Zhang W, Reynolds KA (2001) Genetic approaches for controlling ratios of related polyketide products in fermentation processes. J Ind Microbiol Biotechnol 27:368–377

    Article  PubMed  CAS  Google Scholar 

  5. Gehring AM, Nodwell JR, Beverley SM, Losick R (2000) Genomewide insertional mutagenesis in Streptomyces coelicolor reveals additional genes involved in morphological differentiation. Proc Natl Acad Sci USA 97:9642–9647

    Article  PubMed  CAS  Google Scholar 

  6. Ikeda H, Omura S (2002) In: Omura S (ed) Macrolide antibiotics: chemistry, biology, and practice, 2nd edn. Academic, New York, pp 285–326

  7. Korotkova N, Lidstrom ME (2004) MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J Biol Chem 279:13652–13658

    Article  PubMed  CAS  Google Scholar 

  8. Li C, Florova G, Akopiants K, Reynolds KA (2004) Crotonyl-coenzyme A reductase provides methylmalonyl-CoA precursors for monensin biosynthesis by Streptomyces cinnamonensis in an oil-based extended fermentation. Microbiology 150:3463–3472

    Article  PubMed  CAS  Google Scholar 

  9. Liu H, Reynolds KA (2001) Role of crotonyl coenzyme A reductase in determining the ratio of polyketides monensin A and monensin B produced by Streptomyces cinnamonensis. J Bacteriol 181:6806–6813

    Google Scholar 

  10. Queener SW, Lively DH (1986) In: Demain AL, Soloman NA (eds) Manual of industrial microbiology and biotechnology, American Society for Microbiology, Washington, DC, pp 155–169

  11. Reeves AR, Weber G, Cernota WH, Weber JM (2002) Analysis of an 8.1-kb DNA fragment contiguous with the erythromycin gene cluster of Saccharopolyspora erythraea in the eryCI-flanking region. Antimicrob Agents Chemother 46:3892–3899

    Article  PubMed  CAS  Google Scholar 

  12. Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6:300–312

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez E, Gramajo H (1999) Genetic and biochemical characterization of the alpha and beta components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiology 145:3109–3119

    PubMed  CAS  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) “Molecular Cloning”. Cold Spring Harbour Laboratory Press, ISBN 0-87969-309-6

  15. Sprusansky O, Zhou L, Jordan S, White J, Westpheling J (2003) Identification of three new genes involved in morphogenesis and antibiotic production in Streptomyces coelicolor. J Bacteriol 185:6147–6157

    Article  PubMed  CAS  Google Scholar 

  16. Stassi DL, Kakavas SJ, Reynolds KA, Gunawardana G, Swanson S, Zeidner D, Jackson M, Liu H, Buko A, Katz L (1998) Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc Natl Acad Sci USA 23:7305–7309

    Article  Google Scholar 

  17. Vrijbloed JW, Zerbe-Burkhardt K, Ratnatilleke A, Grubelnik-Leiser A, Robinson JA (1999) Insertional inactivation of methylmalonyl coenzyme A (CoA) mutase and isobutyryl-CoA mutase genes in Streptomyces cinnamonensis: influence on polyketide antibiotic biosynthesis. J Bacteriol 181:5600–5605

    PubMed  CAS  Google Scholar 

  18. Weber JM, McAlpine JB (1992) Erythromycin derivatives. US Patent 5,141,926

  19. Weber JM, Leung JO, Maine GT, Potenz RH, Paulus TJ, DeWitt JP (1990) Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea. J Bacteriol 172:2372–2383

    PubMed  CAS  Google Scholar 

  20. Zhang W, Reynolds KA (2001) MeaA, a putative coenzyme B12-dependent mutase, provides methylmalonyl coenzyme A for monensin biosynthesis in Streptomyces cinnamonensis. J Bacteriol 183:2071–2080

    Article  PubMed  CAS  Google Scholar 

  21. Zhang W, Yang L, Jiang W, Zhao G, Yang Y, Chiao J (1999) Molecular analysis and heterologous expression of the gene encoding methylmalonyl-coenzyme A mutase from rifamycin SV-producing strain Amycolatopsis mediterranei U32. Appl Biochem Biotechnol 82:209–225

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Roy Wesley for helpful comments; Steven Wachs and Allise Wachs of Integral Concepts for helpful discussions and advice on statistical analyses; the National Institute of General Medical Sciences for financial support (Small Business Innovation Research Awards R44GM58943 and R44GM063278); and the John Innes Streptomyces Club for technical and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mark Weber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeves, A.R., Brikun, I.A., Cernota, W.H. et al. Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea . J IND MICROBIOL BIOTECHNOL 33, 600–609 (2006). https://doi.org/10.1007/s10295-006-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-006-0094-3

Keywords

Navigation