Skip to main content
Log in

Distinction between esterases and lipases: A kinetic study with vinyl esters and TAG

  • Articles
  • Published:
Lipids

Abstract

The better to characterize enzymes hydrolyzing carboxyl ester bonds (carboxyl ester hydrolases), we have compared the kinetic behavior of various lipases and esterases against solutions and emulsions of vinyl esters and TAG. Shortchain vinyl esters are hydrolyzed at comparable rates by esterases and lipases and have higher limits of solubility in water than corresponding TAG. Therefore, they are suited to study the influence of the physical state of the substrate on carboxyl ester hydrolase activity within a large concentration range. Enzymes used in this study are TAG lipases from microorganisms, lipases from human and guinea pig pancreas, pig liver esterase, and acetylcholinesterase. This study also includes cutinase, a fungal enzyme that displays functional properties between esterases and lipases. Esterases display maximal activity against solutions of short-chain vinyl esters (vinyl acetate, vinyl propionate, and vinyl butyrate) and TAG (triacetin, tripropionin, and tributyrin). Half-maximal activity is reached at ester concentrations far below the solubility limit. The transition from solution to emulsion at substrate concentrations exceeding the solubility limit has no effect on esterase activity. Lipases are active on solutions of short-chain vinyl esters and TAG but, in contrast to esterases, they all display maximal activity against emulsified substrates and half-maximal activity is reached at substrate concentrations near the solubility limit of the esters. The kinetics of hydrolysis of soluble substrates by lipases are either hyperbolic or deviate from the Michaelis-Menten model and show no or weak interfacial activation. The presence of molecular aggregates in solutions of short-chain substrates, as evidenced by a spectral dye method, likely accounts for the activity of lipases against soluble esters. Unlike esterases, lipases hydrolyze emulsions of water-insoluble medium- and long-chain vinyl esters and IAG such as vinyl laurate, trioctanoin, and olive oil. In conclusion, comparisons of the kinetic behavior of carboxyl ester hydrolases against solutions and emulsions of vinyl esters and TAG allows the distinction between lipases and esterases. In this respect, it clearly appears that guinea pig pancreatic lipase and cutinase are unambiguously classified as lipases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsujita, T., Shirai, K., Saito, Y., and Okuda, H. (1990) Relationship Between Lipase and Esterase, in Isozymes: Structure Function, and Use in Biology and Medicine, pp. 915–933, Wiley-Liss, New York.

    Google Scholar 

  2. Jaeger, K.E., Ransac, S., Dijkstra, B.W., Colson, C., Van Heuvel, M., and Misset, O. (1994) Bacterial Lipases, FEMS Microbiol. Rev. 15, 29–63.

    Article  PubMed  CAS  Google Scholar 

  3. Rosenstein, R., and Götz, F. (2000) Staphylococcal Lipases: Biochemical and Molecular Characterization, Biochimie 82, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  4. Fojan, P., Jonson, P.H., Petersen, M.T.N., and Petersen, S.B. (2000) What Distinguishes an Esterase from a Lipase: A Novel Structural Approach, Biochimie 82, 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  5. Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G.G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al. (1990) A Serine Protease Triad Forms the Catalytic Centre of a Triacylglycerol Lipase, Nature 343, 767–770.

    Article  PubMed  CAS  Google Scholar 

  6. Winkler, F.K., D'Arcy, A., and Hunziker, W. (1990) Structure of Pancreatic Lipase, Nature 343, 771–774.

    Article  PubMed  CAS  Google Scholar 

  7. Derewenda, Z.S., Derewenda, U., and Dodson, G.G. (1992) The Crystal and Molecular Structure of the Rhizomucor miehei Triglyceride Lipase at 1.9 Å Resolution, J. Mol. Biol. 227, 818–839.

    Article  PubMed  CAS  Google Scholar 

  8. Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A., and Thim, L. (1991) A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex, Nature, 351, 761–764.

    Article  Google Scholar 

  9. Schrag, J.D., Yunge, L., Shan, W., and Cygler, M. (1991) Ser-His-Glu Forms the Catalytic Site of a Lipase from Geotrichum candidum, Nature 351, 761–764.

    Article  PubMed  CAS  Google Scholar 

  10. Schrag, J.D., and Cygler, M. (1993) A Refined Structure of the Lipase from Geotrichum candidum, J. Mol. Biol. 230, 575–591.

    Article  PubMed  CAS  Google Scholar 

  11. Van Tilbeurgh, H., Sarda, L., Verger, R., and Cambrillau, C. (1992) Structure of the Lipase-Procolipase Complex, Nature 359, 159–162.

    Article  PubMed  Google Scholar 

  12. Van Tilbeurgh, H., Egloff, M.P., Martinez, C., Rugani, N., Verger, R., and Cambillau, C. (1993) Interfacial Activation of the Lipase-Procolipase Complex by Mixed Micelles Revealed by X-ray Crystallography, Nature 362, 814–820.

    Article  PubMed  Google Scholar 

  13. Longhi, S., and Cambillau, C. (1999) Structure-Activity of Cutinase, a Small Lipolytic Enzyme, Biochim. Biophy. Acta 1441, 185–196.

    CAS  Google Scholar 

  14. Hjorth, A., Carrière, F., Cudrey, C., Woldike, H., Boel, E., Lawson, D.M., Ferrato, F., Cambillau, C., Dodson, G.G., Thim, L., and Verger, R. (1993) A Structural Domain (the lid) Found in Pancreatic Lipases Is Absent in the Guinea Pig (phospho)Lipase, Biochemistry 32, 4702–4707.

    Article  PubMed  CAS  Google Scholar 

  15. Verger, R. (1997) Interfacial Activation of Lipases: Facts and Artifacts, TIBTECH. 15, 32–38.

    CAS  Google Scholar 

  16. Chahinian, H., Nini, L., Boitard, E., Dubès, J.P., Sarda, L., and Comeau, L. (2000) Kinetic Properties of Penicillium cyclopium Lipase Studied with Vinyl Esters, Lipids 35, 919–926.

    Article  PubMed  CAS  Google Scholar 

  17. Nini, L., Sarda, L., Comeau, L.C., Boitard, E., Dubès, J.P., and Chahinian, H. (2001) Lipase-Catalysed Hydrolysis of Short-Chain Substrates in Solution and in Emulsion: A Kinetic Study, Biochim. Biophys. Acta, 1534, 34–44.

    PubMed  CAS  Google Scholar 

  18. Brockerhoff, H. (1968) Substrate Specificity of Pancreatic Lipase, Biochim. Biophys. Acta 159, 296–303.

    PubMed  CAS  Google Scholar 

  19. Brockerhoff, H. (1970) Substrate Specificity of Pancreatic Lipase. Influence of the Structure of the Fatty Acids on the Reactivity of Esters, Biochim. Biophys. Acta 212, 92–101.

    PubMed  CAS  Google Scholar 

  20. Hiol, A., Jonzo, M.D., Rugani, N., Druet, D., Sarda, L., and Comeau, L.C. (2000) Purification and Characterization of an Extracellular Lipase from a Thermophilic Rhizopus oryzae Strain Isolated from Palm Fruit, Enzyme Microb. Technol. 26, 421–430.

    Article  PubMed  CAS  Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with the Folin Phenol Reagent, J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  22. Ferrato, F., Carrière, F., Sarda, L., and Verger, R. (1997) A Critical Reevaluation of the Phenomenon of Interfacial Activation, Methods Enzymol. 286, 327–347.

    Article  PubMed  CAS  Google Scholar 

  23. Berg, O.G., Cajal, Y., Butterfoss, G.L., Grey, R.L., Alsina, M.A., Yu, B.Z., and Jain, M.K. (1998) Interfacial Activation of Triglyceride Lipase from Thermomyces (Humicola) lanuginosa: Kinetic Parameters and a Basis for the Control of the Lid, Biochemistry 37, 6615–6627.

    Article  PubMed  CAS  Google Scholar 

  24. Canioni, P., Julien, R., Rathelot, J., and Sarda, L. (1977) Pancreatic and Microbial Lipases: A Comparison of the Interaction of Pancreatic Colipase with Lipases of Various Origins, Lipids 12, 393–397.

    PubMed  CAS  Google Scholar 

  25. Entressangles, B., and Desnuelle, P. (1968) Action of Pancreatic Lipase on Aggregated Glyceride Molecules in an Isotropic System, Biochim. Biophys. Acta 159, 285–295.

    PubMed  CAS  Google Scholar 

  26. Sarda, L., and Desnuelle, P. (1958) Action de la lipase pancréatique sur les esters en émulsion, Biochim. Biophys. Acta 30, 513–521.

    Article  PubMed  CAS  Google Scholar 

  27. Desnuelle, P., Ailhaud, G., and Sarda, L. (1960) Inhibition de la lipase pancréatique par le diéthyl-p-nitrophénylphosphate en émulsion, Biochim. Biophys. Acta 37, 570–571.

    Article  PubMed  CAS  Google Scholar 

  28. Deever, A.M. (1992) Mechanism of Activation of Lipolytic Enzymes. Ph.D. Thesis, University of Utrecht, The Netherlands, 192 pp.

    Google Scholar 

  29. Noble, M.E.M., Cleasby, A., Johnson, L.N., Egmond, M.R., and Frenken, L.G. (1993) The Crystal Structure of Triacylglycerol Lipase from Pseudomonas glumae Reveals a Partially Redundant Catalytic Aspartate, FEBS Lett. 331, 123–128.

    Article  PubMed  CAS  Google Scholar 

  30. Jaeger, K.E., Ransac, S., Koch, H.B., Ferrato, F., and Dijkstra, B.W. (1993) Topological Characterization and Modeling of the 3D Structure of Lipase from Pseudomonas aeruginosa, FEBS Lett. 332, 143–149.

    Article  PubMed  CAS  Google Scholar 

  31. Jaeger, K.E., Ransac, S., Dijkstra, B.W., Colson, C., Vanheuvel, M., and Misset, O. (1994) Bacterial Lipases, FEMS Microbiol. Rev. 15, 29–63.

    Article  PubMed  CAS  Google Scholar 

  32. Martinelle, M., Holmquist, M., and Hult, K. (1995) On the Interfacial Activation of Candida antarctica Lipase A and B as Compared with Thermomyces lanuginosa Lipase, Biochim. Biophys. Acta 1258, 272–276.

    PubMed  Google Scholar 

  33. Thirstrup, K., Verger, R., and Carrière, F. (1994) Evidence for a Pancreatic Lipase Subfamily with New Kinetic Properties, Biochemistry 33, 2748–2756.

    Article  PubMed  CAS  Google Scholar 

  34. Van Oort, M.G., Deever, A.M., Dijkman, R., Tjeenk, M.L., Vereij, H.M., De Haas, G.H., Wenzig, E., and Götz, F. (1989) Purification and Substrate Specificity of Staphylococcus hyicus Lipase, Biochemistry 28, 9278–9285.

    Article  PubMed  Google Scholar 

  35. Arpigny, J.L., and Jaeger, K.E. (1999) Bacterial Lipolytic Enzymes: Classification and Properties, Biochem. J. 343, 177–183.

    Article  PubMed  CAS  Google Scholar 

  36. Prompers, J.J., Groenewegen, A., Hilbers, C.W., and Pepermans, H.A.M. (1999) Backbone Dynamics of Fusarium solani pisi Cutinase Probed by NMR. The Lack of Interfacial Activation Revisited, Biochemistry 38, 5315–5327.

    Article  PubMed  CAS  Google Scholar 

  37. Egmond, M.R., and de Vlieg, J. (2000) Fusarium solani pisi Cutinase, Biochimie 82, 1015–1021.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chahinian, H., Nini, L., Boitard, E. et al. Distinction between esterases and lipases: A kinetic study with vinyl esters and TAG. Lipids 37, 653–662 (2002). https://doi.org/10.1007/s11745-002-0946-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-002-0946-7

Keywords

Navigation