Skip to main content
Log in

Cellular and metabolic engineering

An overview

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Metabolic engineering is defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. Cellular engineering, a more inclusive term, is defined as the purposeful modification of cell properties using the same techniques. Examples of cellular and metabolic engineering are divided into five categories:

  1. 1.

    Improved production of chemicals already produced by the host organism;

  2. 2.

    Extended substrate range for growth and product formation;

  3. 3.

    Addition of new catabolic activities for degradation of toxic chemicals;

  4. 4.

    Production of chemicals new to the host organism; and

  5. 5.

    Modification of cell properties.

Over 100 examples of cellular and metabolic engineering are summarized. Several molecular biological, analytical chemistry, and mathematical and computational tools of relevance to cellular and metabolic engineering are reviewed. The importance of host selection and gene selection is emphasized. Finally, some future directions and emerging areas are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey, J. E., (1991),Science 252, 1668–1675.

    Article  CAS  Google Scholar 

  2. MacQuitty, J. J., (1988),ACS Symposium Series 362, 11–29.

    CAS  Google Scholar 

  3. Tong, I.-T., Liao, H. H., and Cameron, D. C., (1991),Appl. Environ. Microbiol. 57, 3541–3546.

    CAS  Google Scholar 

  4. Timmis, K. N., Rojo, F., and Ramos, J. L., (1988), inEnvironmental Biotechnology, Omenn, G. S., ed., Plenum Press, New York, pp. 61–79.

    Google Scholar 

  5. Chakrabarty, A. M. (1992), University of Illinois-Chicago, personal communication.

  6. Kellogg, S. T., Chatterjee, D. K., and Chakrarty, A. M., (1981),Science 214, 1133–1135.

    Article  CAS  Google Scholar 

  7. Kanayama, H., Sode, K., Yamamoto, T., and Karube, I., (1988),Biotechnol. Genet. Eng. Rev. 6, 379–401.

    CAS  Google Scholar 

  8. Nerem, R. M., (1991),Ann. Biomed. Eng. 19, 529–545.

    Article  CAS  Google Scholar 

  9. Draths, K. M. and Frost, J. W., (1990),J. Am. Chem. Soc. 112, 9630–9632.

    Article  CAS  Google Scholar 

  10. Draths, K. M. and Frost, J. W., (1990),J. Am. Chem. Soc. 112, 1657–1659.

    Article  CAS  Google Scholar 

  11. Wood, B. E. and Ingram, L. O., (1992),Appl. Environ. Microbiol. 58, 2103–2110.

    CAS  Google Scholar 

  12. Rogers D. T. and Szostak, J. W. (1987), Yeast strains. PCT Int. Appl. WO 87/3006 A1;Chem. Abstr. 107, 234858r.

    Google Scholar 

  13. Fukaya, M., Tayama, K., Tamaki, T., Tagami, H., Okumura, H., Kawamura, Y., and Beppu, T., (1989),Appl. Environ. Microbiol. 55, 171–176.

    CAS  Google Scholar 

  14. Brau, B. and Sahm, H., (1986),Arch. Microbiol. 144, 296–301.

    Article  CAS  Google Scholar 

  15. Tolan, J. S. and Finn, R. K., (1987),Appl. Environ. Microbiol. 53, 2033–2038.

    CAS  Google Scholar 

  16. Tolan, J. S. and Finn, R. K., (1987),Appl. Environ. Microbiol. 53, 2039–2044.

    CAS  Google Scholar 

  17. Ingram, L. O. and Clark, D. P. (1991), Ethanol production using engineeredE. coli. US Patent 5,028,539.

  18. Ingram, L. O., Conway, T., Clark, D. P., Sewell, G. W., and Preston, J. F. (1987),Appl. Environ. Microbiol. 53, 2420–2425.

    CAS  Google Scholar 

  19. Ingram, L. O. and Conway, T., (1988),Appl. Environ. Microbiol. 54, 397–404.

    CAS  Google Scholar 

  20. Alterthum, F. and Ingram, L. O., (1989),Appl. Environ. Microbiol. 55, 1943–1948.

    CAS  Google Scholar 

  21. Ingram, L. O., Alterthum, F., Ohta, K., and Beall, D. S., (1990),Dev. Ind. Microbiol. 31, 21–30.

    CAS  Google Scholar 

  22. Ingram, L. O., Conway, T., and Alterthum, F. (1991), Ethanol production byEscherichia strains co-expressingZymomonas PDC and ADH genes. US Patent 5,000,000.

  23. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 893–900.

    CAS  Google Scholar 

  24. Ohta, K., Beall, D. S., Mejia, P. J., Shanmugam, K. T., and Ingram, L. O. (1991),Appl. Environ. Microbiol. 57, 2810–2815.

    CAS  Google Scholar 

  25. Feldmann, S., Sprenger, G. A., and Sahm, H., (1989),Appl. Microbiol. Biotechnol. 31, 152–157.

    Article  CAS  Google Scholar 

  26. Mermelstein, L. D., Welker, N. E., Bennett, G. N., and Papoutsakis, E. T. (1992),Biotechnology 10, 190–195.

    Article  CAS  Google Scholar 

  27. Cox, K. L., Fishman, S. E., Hershberger, C. L., and Seno, E. T. (1987), Construction of genetically engineered microorganism having improved antibiotic-producing ability. Eur. Pat. Appl. EP 238323 A2;Chem. Abstr. 108, 54455u.

    Google Scholar 

  28. Chen, C. W., Lin, H.-F, Kuo, C. L., Tsai, H.-L., and Tsai, J. F.-Y., (1988),Biotechnology 6, 1222–1224.

    Article  CAS  Google Scholar 

  29. Skatrud, P. L., Tietz, A. J., Ingolia, T. D., Cantwell, C. A., Fisher, D. L., Chapman, J. L., and Queener, S. W., (1989),Biotechnology 7, 477–485.

    Article  CAS  Google Scholar 

  30. Rothstein, D. M., Love, S. F., and Baum, E. Z. (1991), Genetic system for micromonospora. US Patent 5,024,948.

  31. Hutchinson, C. R., (1992),Pharm. Technol. 16, 22.

    CAS  Google Scholar 

  32. Beckmann, R. J., Cox, K. L., Rao, R. N., Richardson, M. A., and Seno, E. T. (1992), Macrolide biosynthetic genes for use in streptomyces and other organisms. US Patent 5,098,837.

  33. Ifuku, O., Haji, S., Kishimoto, J., Sakamoto, T., and Yenagi, M. (1986), High-yield biotin expression vector forEscherichia coli. Jpn. Kokai Tokkyo Koho JP 61/202686 A2;Chem. Abstr. 1987,106, 170235e.

    Google Scholar 

  34. Katsumata, R., Mizukami, T., and Oka, T. (1986),l-Lysine manufacture by recombinant DNA technology. Jpn. Kokai Tokkyo Koho JP 61/209597 A2:Chem. Abstr. 1987,106, 174689d.

    Google Scholar 

  35. Kisumi, M. and Takagi, T. (1987), Method for producingl-aspartic acid. US Patent 4,656,136.

  36. Sugita, T. and Komatsubara, S., (1989),Appl. Microbiol. Biotechnol. 30, 290–293.

    Article  CAS  Google Scholar 

  37. Katsumata, R. and Yokoi, H. (1988), Transformation ofCorynebacterium andBrevibacterium with plasmids encoding arginine biosynthesis enzymes and arginine manufacture with the transformants. Eur. Pat. Appl. EP 261627 A2;Chem. Abstr. 1989,110, 129896r.

    Google Scholar 

  38. Katsumata, R., Yokoi, H., Kino, K. (1988),l-Glutamic acid andl-proline, their recombinant manufacture withCorynebacterium andBrevibacterium. Jpn. Kokai Tokkyo Koho JP 63/119688, A2;Chem. Abstr. 1989,110, 113201z.

    Google Scholar 

  39. Katsumata, R., Yokoi, H., Kino, K. (1988),l-Glutamic acid and its manufacture with recombinantCorynebacterium andBrevibacterium. Jpn. Kokai Tokkyo Koho JP 63/102692, A2;Chem. Abstr. 1988,109, 188807q.

    Google Scholar 

  40. Backman, K.C. and Balakrishnan, R. (1988), Controlled gene excision. US Patent 4,743,546.

  41. Backman, K. C. (1989), Method of biosynthesis and cells therefor. US Patent 4,839,286.

  42. Backman, K., O'Connor, M. J., Maruya, A., Rudd, E., McKay, D., Balakrishnan, R., Radjai, M., DiPasquantonio, V., Shoda, D., Hatch, R., and Venkatasubrubramanian, K., (1990),Ann. NY Acad. of Sci. 589, 16–24.

    Article  CAS  Google Scholar 

  43. Lee, S. B., Won, C. H., Park, C., and Lim, B. S. (1991), Method for production ofl-phenylalanine by recombinantE. coli. US Patent 5,008,190.

  44. Ikeda, M. and Katsumata, R. (1992),Appl. Environ. Microbiol. 58, 781–785.

    CAS  Google Scholar 

  45. Pollock, T. J. and Thorne, L. (1988), Enhanced manufacturing of xanthan gum with genetically modifiedXanthomonas. Eur. Pat. Appl. EP 287363;Chem. Abstr. 1989,105, 93587z.

    Google Scholar 

  46. Ben-Bassat, A., Calhoon, R. D., Fear, A. L., Gelfand, D. H., Meade, J. H., Tal, R., Wong, H., and Bensiman, M. (1990), The cellulose synthase operon ofAcetobacter: cloning and expression. PCT Int. Appl. WO 9012098 A2 18 Oct 1990;Chem. Abstr. 1991,115, 200336u.

    Google Scholar 

  47. Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., Benziman, M., Gelfand, D. H., Meade, J. H., Emerick, A. W., Bruner, R., Ben-Bassat, A., and Tal, R. (1990),Proc. Natl. Acad. Sci. USA 87, 8130–8134.

    Article  CAS  Google Scholar 

  48. Murata, K. and Kimura, A. (1990),Biotech. Adv. 8, 59–96.

    Article  CAS  Google Scholar 

  49. Shiomi, N. and Fukuda, H. (1992), Gene capable of enhancingS-adenosyl-l-methionine accumulation and process for producingS-adenosyl-l-methionine using the same. US Patent 5,100,786.

    Google Scholar 

  50. Frost, J. W., Reimer, L. M., Draths, K. M., Pompliano, D. L., and Conely, D. L. (1990), inBiocatalysis, Abramowicz, D. A., ed., Van Nostrand, New York, pp. 93–113.

    Google Scholar 

  51. Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J., and Lievense, J. C. (1992),J. Am. Chem. Soc. 114, 3956–3962.

    Article  CAS  Google Scholar 

  52. Dunahay, T. G., Jarvis, E. E., Zeiler, K. G., Roessler, P. G., and Brown, L. M. (1992),Appl. Biochem. Biotechnol. 34/35, 331–339.

    Google Scholar 

  53. Beall, D. S., Ohta, K., and Ingram, L. O. (1991),Biotechnol. Bioeng. 38, 296–303.

    Article  CAS  Google Scholar 

  54. Diaz-Ricci, J. C., Hitzmann, B., and Bailey, J. E. (1991),Biotechnol. Prog. 7, 305–310.

    Article  CAS  Google Scholar 

  55. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1991),Biotechnol. Bioeng. 39, 59–65.

    Article  Google Scholar 

  56. Lawford, H. G., and Rousseau, J. D. (1992),Appl. Biochem. Biotechnol. 34/35, 185–204.

    Google Scholar 

  57. Lawford, H. G. and Rousseau, J. D. (1991),Appl. Biochem. Biotechnol. 28/29, 221–236.

    Google Scholar 

  58. Ohta, K., Alterhum, F., and Ingram, L. O. (1990),Appl. Environ. Microbiol. 56, 463–465.

    CAS  Google Scholar 

  59. Papoutsakis, E. T. and Bennet, G. N. (1991), inClostridia and Biotechnology, Wood, D. R., ed., Butterworth, Oxford, UK.

    Google Scholar 

  60. Hopwood, D. A., Malpartida, F., Kieser, H. M., Ikeda, H., Duncan, J., Fujii, I., Rudd, B. A. M., Floss, H. G., and Omura, S. (1985),Nature (Lond.),314, 642–644.

    Article  CAS  Google Scholar 

  61. Stanzak, R., Matsushima, P., Baltz, R. H., and Rao, R. N. (1986),Biotechnology 4, 229–232.

    Article  CAS  Google Scholar 

  62. Weber, J. M., Leung, J. O., Swanson, S. J., Idler, K. B., and McAlpine, J. B. (1991),Science 252, 114–117.

    Article  CAS  Google Scholar 

  63. Epp, J. K., Huber, L. B., Turner, J. R., Goodson, T., and Schoner, B. E. (1989),Gene 85, 293–301.

    Article  CAS  Google Scholar 

  64. Smith, D. J., Burnham, M. K. R., Edwards, J., Earl, A. J., and Turner, G. (1991),Biotechnology 8, 39–41.

    CAS  Google Scholar 

  65. Slater, S. C., Voige, W. H., and Dennis, D. E. (1988),J. Bacteriol. 170, 4431–4436.

    CAS  Google Scholar 

  66. Peoples, O. P. and Sinskey, A. J. (1990), inNovel Biodegradable Microbial Polymers, Dawes, E. A., ed., Kluwer Academic Publishers, Netherlands, pp. 191–202.

    Google Scholar 

  67. Timm, A., Byrom, D., and Steinbuchel, A. (1990),Appl. Microbiol. Biotechnol. 33, 296–301.

    Article  CAS  Google Scholar 

  68. Slater, S., Gallaher, T., and Dennis, D. (1992),Appl. Environ. Microbiol. 58, 1089–1094.

    CAS  Google Scholar 

  69. Poirier, Y., Dennis, D. E., Klomparens, and Somerville, C. (1992),Science 256, 520–523.

    Article  CAS  Google Scholar 

  70. Hassler, R. A. and Doherty, D. H. (1990),Biotechnol. Prog. 6, 182–187.

    Article  CAS  Google Scholar 

  71. della-Cioppa, G., Garger, S. J., Sverlow, G. G., Turpen, T. H., and Grill, L. K. (1990),Biotechnology 8, 634–638.

    Article  CAS  Google Scholar 

  72. Ensley, B. D., Ratzkin, B. J., Osslund, T. D., Simon, M. J., Wackett, L. P., and Gibson, D. T. (1983),Science 222, 167–169.

    Article  CAS  Google Scholar 

  73. Ensley, B. D. (1985), Microbial production of indigo. US Patent 4,520,103.

  74. Mermod, N., Harayama, S., and Timmis, K. N. (1986),Biotechnology 4, 321–324.

    Article  CAS  Google Scholar 

  75. Keil, H., Saint, C. M., and Williams, P. A. (1987),J. Bacteriol. 169, 764–770.

    CAS  Google Scholar 

  76. Stephens, G. M., Sidebotham, J. M., Mann, N. H., and Dalton, H. (1989),FEMS Microbiol. Lett. 57, 295–300.

    Article  CAS  Google Scholar 

  77. Hart, S. and Woods, D. R. (1992),J. Gen. Microbiol. 138, 205–209.

    CAS  Google Scholar 

  78. Hart, S., Koch, K. R., and Woods, D. R. (1992),J. Gen. Microbiol. 138, 211–216.

    CAS  Google Scholar 

  79. Anderson, S., Marks, C. B., Lazarus, R., Miller, J., Stafford, K., Seymour, J., Light, D., Rastetter, W., and Estell, D. (1985),Science 230, 144–149.

    Article  CAS  Google Scholar 

  80. Lazarus, R. A., Seymour, J. L., Stafford, R. K., Dennis, M. S., Lazarus, M. G., Marks, C. B., and Anderson, S. (1990), inBiocatalysis, Abramowicz, D. A., ed., Van Nostrand Reinhold, New York, pp. 135–155.

    Google Scholar 

  81. Anderson, S., Lazarus, R. A., Miller, H. I., and Stafford, R. K., (1991), Metabolic pathway engineering to increase production of ascorbic acid intermediates. US Patent 5,032,514.

  82. Hardy, K., van de Pol, H., Grindley, J., and Payton, M. A. (1990), Production of a vitamin C precursor using genetically modified organisms. US Patent 4,945,052.

    Google Scholar 

  83. Goelling, D. and Stahl, U. (1988),Appl. Environ. Microbiol. 54, 1889–1891.

    CAS  Google Scholar 

  84. Katsumata, R. and Ikeda, M. (1988), Manufacture of tyrosine with recombinant tryptophan-producingCorynebacterium orBrevibacterium. Eur. Pat. Appl. EP 263515 A2,Chem. Abstr. 1988,109, 228741x.

    Google Scholar 

  85. Laeufer, A., Gassen, H. G., Flachmann, R., Hoeke, H., Hoeltman, W., Kunz, N., Stadelhofer, J., and Seifert, J. (1988), Cloning of microbialnadA andnadB genes and quinolinic acid manufacture with microorganisms transformed with plasmids containing these genes. Ger. Ofen. DE 3703255 A1;Chem. Abstr. 1989,110, 52336y.

    Google Scholar 

  86. Tong, I.-T., and Gameron, D. C. (1992),Appl. Biochem. Biotech. 34/35, 149–159.

    Google Scholar 

  87. Tong, I.-T. (1992), Microbial production of 1,3-propanediol inEscherichia coli: a model system for metabolic engineering. Ph.D. Thesis, University of Wisconsin-Madison.

  88. Draths, K. M. and Frost, J. W. (1991),J. Am. Chem. Soc. 113, 9361–9363.

    Article  CAS  Google Scholar 

  89. Hallborn, J., Walfridsson, M., Airaksinen, U., Ojamo, H., Hanhn-Hagerdal, B., Penttila, M., and Keranen, S. (1991),Biotechnology 9, 1090–1095.

    Article  CAS  Google Scholar 

  90. Favre-Bulle, O., Schouten, T., Kingma, J., and Withholt, B. (1991),Biotechnology 9, 367–371.

    Article  CAS  Google Scholar 

  91. Oakes, J. V., Skewmaker, C. K., and Stalker, D. M. (1991),Biotechnology 9, 982–986.

    Article  CAS  Google Scholar 

  92. Saito, K., Yamazaki, M., Kawaguchi, A., and Murakoshi, I. (1991),Tetrahedron. 47, 5955–5968.

    Article  CAS  Google Scholar 

  93. Misawa, N., Yamano, S., and Ikenaga, H. (1991),Appl. Environ. Microbiol. 57, 1847–1849.

    CAS  Google Scholar 

  94. Ausich, R. L., Proffitt, J. H., and Yarger, J. G. (1991), Biosynthesis of carotenoids in genetically engineered hosts. International Patent Application International Application Number: PCT/US91/01458;Chem. Abstr. 1992,116, 35644d.

    Google Scholar 

  95. Voelker, T. A., Worrell, A. C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D. J., Radke, S. E., and Davies, H. M. (1992),Science 257, 72–74.

    Article  CAS  Google Scholar 

  96. Picataggio, S., Rohrer, T., Deanda, K., Lanning, D., Reynolds, R., Mielenz, J., and Eirich, L. D. (1992),Biotechnology 10, 894–898.

    Article  CAS  Google Scholar 

  97. Chater, K. F. (1990),Biotechnology 8, 115–121.

    Article  CAS  Google Scholar 

  98. Tsai, H.-J., and Sandine, W. E. (1987),J. Indust. Microbiol. 2, 25–33.

    Article  Google Scholar 

  99. Koch, A. K., Reiser, J., Kappeli, O., and Fiechter, A. (1988),Biotechnology 6, 1335–1339.

    Article  CAS  Google Scholar 

  100. Fu, J.-F. and Tseng, Y.-H. (1990),Appl. Environ. Microbiol. 56, 919–923.

    CAS  Google Scholar 

  101. Pries, A., Steinbuchel, A., and Schegel, H. G. (1990),Appl. Microbiol. Biotechnol. 33, 410–417.

    Article  CAS  Google Scholar 

  102. Buchholz, S. E. and Eveleigh, D. E. (1990),Biotech. Adv. 8, 547–581.

    Article  CAS  Google Scholar 

  103. Kumar, V., Ramakrishnan, S., Teeri, T. T., Knowles, J. K. C., and Hartley, B. S. (1992),Biotechnology 10, 82–85.

    Article  CAS  Google Scholar 

  104. Burchhardt, G. and Ingram, L. O. (1992),Appl. Environ. Microbiol. 58, 1128–1133.

    CAS  Google Scholar 

  105. Tsunekawa, H., Azuma, S., Okabe, M., Okamoto, R., and Aiba, S. (1992),Appl. Environ. Microbiol. 58, 2081–2088.

    CAS  Google Scholar 

  106. Romano, A. H. (1986),Trends in Biotechnology 4, 207–213.

    Article  CAS  Google Scholar 

  107. Sarthy, A. V., McConaughy, B. L., Lobo, Z., Sundstrom, J. A., Furlong, C. E., and Hall, B. D. (1987),Appl. Environ. Microbiol. 53, 1996–2000.

    CAS  Google Scholar 

  108. Ho, N. W. Y. (1992), Genetic engineering of yeast for the conversion of xylose to ethanol fuel and chemicals. Abstracts of Papers, 1992 Annual Meeting, American Institute of Chemical Engineers, Miami Beach, Florida, AIChE, New York, 154d.

  109. Chakrabarty, A. M. (1974), Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US Patent 3,813,316.

  110. Rojo, F., Pieper, D. H., Engesser, K.-H., Knackmuss, H.-J., and Timmis, K. N. (1987),Science 238, 1395–1398.

    Article  CAS  Google Scholar 

  111. Ramos, J. L., Wasserfallen, A., Rose, K., and Timmis, K. N. (1987),Science 235, 593–596.

    Article  CAS  Google Scholar 

  112. Winter, R. B., Yen, K.-M., and Ensley, B. E. (1989),Biotechnology 7, 282–285.

    Article  CAS  Google Scholar 

  113. Mondello, F. J. (1989),J. Bacteriol. 171, 1725–1732.

    CAS  Google Scholar 

  114. Adams, R. H., Huang, C.-M., Higson, F. K., Brenner, V., and Focht, D. D. (1992),Appl. Environ. Microbiol. 58, 647–654.

    CAS  Google Scholar 

  115. Hutchinson, C. R. (1987),Appl. Biochem. Biotechnol. 16, 169–189.

    Article  CAS  Google Scholar 

  116. Hutchinson, C. R. (1988),Med. Res. Rev. 8, 557–567.

    Article  CAS  Google Scholar 

  117. Amato, I. (1991),Science 253, 1214.

    Google Scholar 

  118. Windass, J. D., Worsey, M. J., Pioli, E. M., Barth, P. T., Atherton, K. T., Dart, E. C., Byrom, D., and Senior, P. J. (1980),Nature (Lond.) 287: 396–401.

    Article  CAS  Google Scholar 

  119. Senior, P. J. and Windass, J. (1980),Biotechnol. Lett. 2, 205–210.

    Article  CAS  Google Scholar 

  120. Khosla, C. and Bailey, J. E. (1988),Nature (Lond.) 331, 633–635.

    Article  CAS  Google Scholar 

  121. Bailey, J. E., Birnbaum, S., Galazzo, J. L., Khosla, C., and Shanks, J. V. (1990),Ann. NY Acad. of Sci. 589, 1–15.

    Article  CAS  Google Scholar 

  122. Khosla, C. S. and Bailey, J. E. (1991), Enhancement of cell growth by expression of cloned hemoglobin gene. US Patent 5,049,493.

  123. Hanegraaf, P. P. F., Punt, P. J., van den Hondel, C. A. M., Dekker, J., van Verseveld, H. W., and Stouthamer, A. H. (1991),Appl. Microbiol. Biotechnol. 34, 765–771.

    Article  CAS  Google Scholar 

  124. Dabora, R. L., Eberiel, D. T., and Cooney, C. L. (1989),Biotechnol. Lett. 11, 845–850.

    Article  CAS  Google Scholar 

  125. Ogden, K. L. and Davis, R. H. (1991),Biotechnol. Bioeng. 37, 325–333.

    Article  CAS  Google Scholar 

  126. Murata, K., Fukudu, Y., Shimosaka, M., Watanabe, K., Saikusa, T., and Kimura, A. (1985),Appl. Environ. Microbiol. 50, 1200–1207.

    CAS  Google Scholar 

  127. Paau, A. S. (1991),Biotech. Adv. 8, 173–184.

    Article  Google Scholar 

  128. Romeyer, F. M., Jacobs, F. A., Masson, L., Hanna, Z., and Brousseau, R. (1988),J. Biotechnol. 8, 207–220.

    Article  CAS  Google Scholar 

  129. Bülow, L. and Mosbach, K. (1991),Gene 109, 125–129.

    Article  Google Scholar 

  130. Rosson, R. (1992), Biotechnical Resources, Inc., Manitowoc, WI, personal communication.

  131. Buchholz, S. E., Omer, C. A., Viitanen, P. V., Sariaslani, F. S., and Stahl, R. G., Jr. (1992),Appl. Biochem. Biotechnol. 32, 149–158.

    CAS  Google Scholar 

  132. McCue, K. F. and Hanson, A. D. (1990),Trends in Biotechnol. 8, 358–362.

    Article  CAS  Google Scholar 

  133. Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C. J., and Broglie, R. (1991),Science 254, 1194–1199.

    Article  CAS  Google Scholar 

  134. Dorner, A. J., Krane, M. G., and Kaufman, R. J. (1988),Mol. Cell. Biol. 8, 4063–4070.

    CAS  Google Scholar 

  135. Lee, E. U., Roth, J., and Paulson, J. C. (1989),J. Biol. Chem. 264, 13,848–13,855.

    CAS  Google Scholar 

  136. Kaufman, R. J., Wasley, L. C., Davies, M. V., Wise, R. J., Israel, D. I., and Dorner, A. J. (1989),Mol. Cell. Biol. 9, 1233–1242.

    CAS  Google Scholar 

  137. Rees, W. D., Flint, H. J., and Fuller, M. F. (1990),Biotechnology 8, 629–633.

    Article  CAS  Google Scholar 

  138. Cameron, D. C., Chaplen, F., and Fahl, W. (1991), Influence of glyoxalase I activity on mammalian cells grown in culture. Abstracts of Papers, 1991 Annual Meeting, American Institute of Chemical Engineers, Los Angeles, CA: AIChE, NY; 267d.

  139. Lauffenburger, D. A., Starbuck, C., and Wiley, H. S. (1991), Engineering growth factor/receptor processes: effects of EGF receptor trafficking dynamics on cell proliferation responses to EGF.Proceedings of 1991 US/Japan Conference on Biotechnology, Tanner, R. D., ed., Springer-Verlag, New York.

    Google Scholar 

  140. Starbuck, C. and Lauffenburger, D. A. (1992),Biotechnol. Prog. 8, 132–143.

    Article  CAS  Google Scholar 

  141. Hughes, S. D., Johnson, J. H., Quaade, C., and Newgard, C. B. (1992),Proc. Natl. Acad. Sci. USA 89, 688–692.

    Article  CAS  Google Scholar 

  142. Danheiser, S. L. (1992),Genetic Engineering News 12, 1, 19, 22.

    Google Scholar 

  143. Szalay, A. A. and Williams, J. G. K. (1988), Genetic engineering in cyanobacteria. US Patent 4,778,759.

  144. Muth, G., Wohlleben, W., Pühler, A., Wöhner, G., and Marquardt, R. (1990), Color marker in streptomycetes plasmids. US Patent 4,963,496.

  145. Shanks, J. V., Fernet, M.-D., and Ho, C.-H. (1992), inAdvances in Bioreactor Monitoring, Wang, N. S., ed., Academic Press, New York, NY.

    Google Scholar 

  146. Mavrovouniotis, M. L. (1990),Biotechnol. Bioeng. 36, 1070–1082.

    Article  CAS  Google Scholar 

  147. Karp, P. D. (1992),CABIOS 8, 347–357.

    CAS  Google Scholar 

  148. Cooney, C. L. and Acevedo, F. (1977),Biotechnol. Bioeng. 19, 1449–1462.

    Article  CAS  Google Scholar 

  149. Papoutsakis, E. T. (1984),Biotechnol. Bioeng. 26, 174–187.

    Article  CAS  Google Scholar 

  150. Seressiotis, A. and Bailey, J. E. (1986),Biotechnol. Lett. 8, 837–842.

    Article  CAS  Google Scholar 

  151. Seressiotis, A. and Bailey, J. E. (1988),Biotechnol. Bioeng. 31, 587–602.

    Article  CAS  Google Scholar 

  152. Mavrovouniotis, M. L., Stephanopoulos, G. and Stephanopoulos, G. (1990),Biotechnol. Bioeng. 36, 1119–1132.

    Article  CAS  Google Scholar 

  153. Savageau, M. A. (1969),J. Theor. Biol. 25, 365–369.

    Article  CAS  Google Scholar 

  154. Savageau, M. A. (1969),J. Theor. Biol. 25, 370–379.

    Article  CAS  Google Scholar 

  155. Savageau, M. A. (1970),J. Theor. Biol. 26, 215–226.

    Article  CAS  Google Scholar 

  156. Kacser, H. and Burns, J. A. (1973),Symp. Soc. Exp. Biol. 27, 65–104.

    CAS  Google Scholar 

  157. Heinrich, R., Rapoport, S. M., and Rapoport, T. A. (1977),Prog. Biophys. Molec. Biol. 32, 1–82.

    Article  CAS  Google Scholar 

  158. Savageau, M. A., Voit, E. O., and Irvine, D. H. (1987),Math. Biosci. 86, 127–145.

    Article  CAS  Google Scholar 

  159. Savageau, M. A. (1992),J. Theor. Biol. 154, 131–136.

    Article  CAS  Google Scholar 

  160. Malmberg, L. and Hu, W. (1991),Biotechnol. Bioeng. 38, 941–947.

    Article  CAS  Google Scholar 

  161. Palsson, B. O. and Lee, I.-D. (1992), University of Michigan, personal communication.

  162. Liao, J. C. and Lightfoot, E. N. (1988),Biotechnol. Bioeng. 31, 847–854.

    Article  CAS  Google Scholar 

  163. Delgado, J. P. and Liao, J. C. (1991),Biotechnol. Prog. 7, 17–20.

    Article  Google Scholar 

  164. Stephanopoulos, G. and Vallino, J. J. (1991),Science 252, 1675–1681.

    Article  CAS  Google Scholar 

  165. Liao, J. C. and Delgado, J. (in press),Biotechnol. Prog.

  166. Gold, R. S., Meagher, M. M., Hutkins, R., and Conway, T. (1992),J. Indust. Microbiol. 10, 45–54.

    Article  CAS  Google Scholar 

  167. Tang, Y., Hicks, J. B., and Hilvert, D. (1991),Proc. Natl. Acad. Sci. USA 88, 8784–8786.

    Article  CAS  Google Scholar 

  168. Bülow, L. and Mosbach, K. (1991),Trends in Biotechnol. 9, 226–231.

    Article  Google Scholar 

  169. Shibata, M., Sakaki, T., Yabusaki, Y., Murakami, H., and Ohkawa, H. (1990),DNA and Cell Biology 9, 27–36.

    Article  CAS  Google Scholar 

  170. Hopwood, D. A. and Khosla, C. (1992), in:Secondary Metabolites: Their Function and Evolution, Chadick, D. J. and Whelan, J., eds., Wiley Interscience, UK.

    Google Scholar 

  171. Mittenthal, J. E., Clarke, B., and Levinthal, M. (1992), inThinking About Biology, Varela, F. and Stein, W., eds., Addison-Wesley, Reading, MA.

    Google Scholar 

  172. Savageau, M. A. (1992), inFundamentals of Medical Cell Biology, Bittar, E. E., ed., JAI Press, pp. 45–108.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cameron, D.C., Tong, IT. Cellular and metabolic engineering. Appl Biochem Biotechnol 38, 105–140 (1993). https://doi.org/10.1007/BF02916416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916416

Index Entries

Navigation