Skip to main content

Advertisement

Log in

Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Clostridium thermocellum is a gram-positive, acetogenic, thermophilic, anaerobic bacterium that degrades cellulose and carries out mixed product fermentation, catabolising cellulose to acetate, lactate, and ethanol under various growth conditions, with the concomitant release of H2 and CO2. Very little is known about the factors that determine metabolic fluxes influencing H2 synthesis in anaerobic, cellulolytic bacteria like C. thermocellum. We have begun to investigate the relationships between genome content, gene expression, and end-product synthesis in C. thermocellum cultured under different conditions. Using bioinformatics tools and the complete C. thermocellum 27405 genome sequence, we identified genes encoding key enzymes in pyruvate catabolism and H2-synthesis pathways, and have confirmed transcription of these genes throughout growth on α-cellulose by reverse transcriptase polymerase chain reaction. Bioinformatic analyses revealed two putative lactate dehydrogenases, one pyruvate formate lyase, four pyruvate:formate lyase activating enzymes, and at least three putative pyruvate:ferredoxin oxidoreductase (POR) or POR-like enzymes. Our data suggests that hydrogen may be generated through the action of either a Ferredoxin (Fd)-dependent NiFe hydrogenase, often referred to as “Energy-converting Hydrogenases”, or via NAD(P)Hdependent Fe-only hydrogenases which would permit H2 production from NADH generated during the glyceraldehyde-3-phosphate dehydrogenase reaction. Furthermore, our findings show the presence of a gene cluster putatively encoding a membrane integral NADH:Fd oxidoreductase, suggesting a possible mechanism in which electrons could be transferred between NADH and ferredoxin. The elucidation of pyruvate catabolism pathways and mechanisms of H2 synthesis is the first step in developing strategies to increase hydrogen yields from biomass. Our studies have outlined the likely pathways leading to hydrogen synthesis in C. thermocellum strain 27405, but the actual functional roles of these gene products during pyruvate catabolism and in H 2 synthesis remain to be elucidated, and will need to be confirmed using both expression analysis and protein characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamed R and Zeikus G (1980) Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanerobium brockii. J Bacteriol 144:569–578

    PubMed  CAS  Google Scholar 

  2. Lynd LR and Grethlein HG (1987) Hydrolysis of dilute acid pretreated hardwood and purified microcyrstalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol Bioeng 29:92–100

    Article  PubMed  CAS  Google Scholar 

  3. Ng TK, Weimer PJ and Zeikus JG (1977) Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol 114:1–7

    Article  PubMed  CAS  Google Scholar 

  4. Patni NJ and Alexander JK (1971a) Catabolism of fructose and mannitol by Clostridium thermocellum: Presence of phosphoenolpyruvate:fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenol-pyruvate:mannitol phosphotransferase, and mannitol-1-phosphate dehydrogenase in cell extracts. J Bacteriol 105:226–231

    PubMed  CAS  Google Scholar 

  5. Patni NJ and Alexander JK (1971b) Utilization of glucose by Clostridium thermocellum: Presence of glucokinase and other glycolytic enzymes in cell extracts. J Bacteriol 105:220–225

    PubMed  CAS  Google Scholar 

  6. Thauer RK, Jungermann KA and Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  7. Sparling R, Islam R, Cicek N, Carere C, Chow H and Levin DB (2006) Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 52:681–688

    Article  PubMed  CAS  Google Scholar 

  8. Demain AL, Newcomb M and Wu JHD (2005) Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  PubMed  CAS  Google Scholar 

  9. Lynd LR, Weimer PJ, van Zyl WH and Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Micro Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  10. Lynd LR, Grethlein HG and Wolkin RH (1989) Fermentation of cellulose substrates in batch and continuous culture by Clostridium thermocellum. App Environ Microbiol 55:3131–3139

    CAS  Google Scholar 

  11. Islam R, Cicek N, Sparling R and Levin DB (2006) Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl Microbiol Biotechnol 72(3):576–583

    Article  PubMed  CAS  Google Scholar 

  12. Levin DB, Sparling R, Islam R and Cicek N (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy 31(11):1496–1503

    Article  CAS  Google Scholar 

  13. Charon MH, Volbeda A, Chabriére E, Pieulle L and Fontecilla-Camps JC (1999) Structure and electron transfer mechanism of pyruvate:ferredodin oxidoreductase. Curr Opin Struct Biol 9:663–669

    Article  PubMed  CAS  Google Scholar 

  14. Hallenbeck PC and Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy 27:1185–1193

    Article  CAS  Google Scholar 

  15. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    PubMed  CAS  Google Scholar 

  16. Sauter M and Sawers G (1990) Transcriptional analysis of the gene encoding Pyruvate formate lyase activating enzyme of Escherichia coli. Mol Microbiol 4:355–363

    Article  PubMed  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  18. Sirko A, Zehelein E, Freundlich M and Sawers G (1993) Integration host factor is required for anaerobic pyruvate induction of pfl operon expression in Escherichia coli. J Bacteriol 175 :5769–5

    PubMed  CAS  Google Scholar 

  19. Özkan M, Ylmaz E, Lynd LR and Özcengiz G (2004) Cloning and Expression of the Clostridium thermocellum L-lactate Dehydrogenase in Escherichia coli and Enzyme Characterization. Can J Microbiol 50:845–851

    Article  PubMed  Google Scholar 

  20. Weidner G and Sawers G (1996) Molecular characterization of the genes encoding pyruvate formate-lyase and its activating enzyme of Clostridium pasteurianum. J Bacteriol 178:2440–2444

    PubMed  CAS  Google Scholar 

  21. Meinecke B, Bertram J and Gottschalk G (1989) Purification and characterization of the pyruvate-ferredoxin oxidoreductase of Clostridium acetobutylicum. Arch Microbiol 152:244–250

    Article  PubMed  CAS  Google Scholar 

  22. Desai SG, Steven DM, Prince HL, Guerinot ML, Lynd LH (1999) Clostridium thermocellum hydrogenase 1. GenBank accession # Q9XC55. Direct Submission

  23. Soboh B, Linder D and Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463

    Article  PubMed  CAS  Google Scholar 

  24. Vanoni MA, Verzotti E, Zanetti G and Curti B (1996) Properties of the recombinant b subunit of glutamate synthase. European J Biochem 236:937–946

    Article  CAS  Google Scholar 

  25. Forzi L, Koch J, Guss AM, Radosevich CG, Metcalf W and Hedderich R (2005) Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS Journal 272:4741–4753

    Article  PubMed  CAS  Google Scholar 

  26. Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A and Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321

    Article  PubMed  CAS  Google Scholar 

  27. Guedon E, Payot S, Desvaux M and Petitdemanger H (1999) Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 181:3262–3269

    PubMed  CAS  Google Scholar 

  28. Dabrock B, Bahl H and Gottschalk G (1992) Parameters affecting solvent production in Clostridium pasteurianum. Appl Environ Microbiol 58:1233–1239

    PubMed  CAS  Google Scholar 

  29. Viles F and Silverman L (1949) Determination of starch and cellulose. Anal Chem 21:950–953

    Article  CAS  Google Scholar 

  30. Thauer RK, Kirchniawy FH and Jungermann KA (1972) Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem 23:282–290

    Article  Google Scholar 

  31. Vasconcelos I, Girbal L and Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutyliticum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176(5):1443–1450

    PubMed  CAS  Google Scholar 

  32. Kletzin A and Adams MWW (1996) Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosis and pyruvate ferredoxin oxidoreductase from Thermotoga maritime. J Bacteriol 178:248–257

    PubMed  CAS  Google Scholar 

  33. Kunow J, Linder D and Thauer RK (1995) Pyruvate:ferredoxin oxidoreductase from sulfate reducing Archaeoglubus fulgidis: molecular composition, catalytic properties and sequence alignments. Arch Microbiol 63:21–28

    Google Scholar 

  34. Hughes NJ, Chalk PA, Clayton CL and Kelly DJ (1995) Identification of carboxylation enzymes and characterization of a novel four-subunit Pyruvate:Flavodoxin Oxidoreductase from Helicobacter pylori. J Bacteriol 177(14):3953–3959

    PubMed  CAS  Google Scholar 

  35. Peters JW, Lanzilotta WN, Lemon BJ and Seefeldt LC (1998) X-ray crystal structure of the Fe-Only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science, 282:1853–1858

    Article  PubMed  CAS  Google Scholar 

  36. Vignais PM, Billoud B and Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Reviews 25:455–501

    CAS  Google Scholar 

  37. Jungermann K, Thauer RK, Leimenstoll G and Decker K (1973) Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochimica et Biophysica Acta — Bioenergetics, 305:268–280

    Article  CAS  Google Scholar 

  38. Chen YP and Yoch DC (1989) Isolation, characterization and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol 171:5012–5016

    PubMed  CAS  Google Scholar 

  39. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M and Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9(4):123–130

    Article  PubMed  CAS  Google Scholar 

  40. Desai SG, Guerinot ML and Lynd LR (2004) Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 65(5):600–605

    Article  PubMed  CAS  Google Scholar 

  41. Nolling J, Breton G, Omelchenko MV, Markarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV and Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183(16):4823–4838

    Article  PubMed  CAS  Google Scholar 

  42. Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, De-Boy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB and Paulsen IT (2006) Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16(8):1031–1040

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carere, C.R., Kalia, V., Sparling, R. et al. Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian J Microbiol 48, 252–266 (2008). https://doi.org/10.1007/s12088-008-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-008-0036-z

Keywords

Navigation