Skip to main content
Log in

Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol yield in the presence of glycerol using xylose as a substrate. With an inactivated lactate pathway and expressed glycerol dehydrogenase activity, the metabolism of the cells was shifted toward the production of ethanol over acetate, hence restoring the redox balance. It was also shown that strain BG1G1 acquired the capability to utilize glycerol as an extra carbon source in the presence of xylose, and utilization of the more reduced substrate glycerol resulted in a higher ethanol yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brinen LS, Canaves JM, Dai X, Deacon AM, Elsliger MA, Eshaghi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Guda C, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kreusch A, Kuhn P, Lesley SA, McMullan D, McPhillips TM, Miller MA, Miller MD, Morse A, Moy K, Ouyang J, Robb A, Rodrigues K, Selby TL, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Taylor SS, Hodgson KO, Wooley J, Wilson IA (2003) Crystal structure of a zinc-containing glycerol dehydrogenase (TM0423) from Thermotoga maritima at 1.5 A resolution. Proteins 50:371–374

    Article  CAS  Google Scholar 

  • Bryant MP (1972) Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25:1324–1328

    CAS  Google Scholar 

  • Burton RM (1955) Methods in enzymology, vol 1. Academic Press, New York, p 397

    Book  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  • Georgieva T, Mikkelsen MJ, Ahring BK (2008) Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol 145:99–110

    Article  CAS  Google Scholar 

  • Germain P, Toukourou E, Donaduzzi L (1986) Ethanol production by anaerobic thermophilic bacteria: regulation of lactate dehydrogenase activity in Clostridium thermohydrosulfuricum. Appl Microbiol Biotech 24:300–305

    Article  CAS  Google Scholar 

  • Huber R, Langworthy TA, Köning H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144:324–333

    Article  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for the cultivation of strict anaerobes. Meth Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  • Ingram LO, Aldrich HC, Borges AC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1991) Clostrida. Plenum Pres, New York

    Google Scholar 

  • Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119

    Article  CAS  Google Scholar 

  • Lynd LR (1989) Production of ethanol from lignocellulosic materials using thermophilic bacteria: critical evaluation of potential and review. Adv Biochem Eng 38:1–52

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Mikkelsen MJ, Ahring BK (2007) Thermoanaerobacter mathranii strain BG1. WO patent application 2007134607

  • Mikkelsen MJ, Yao S (2010) Increased ethanol production in recombinant bacteria. WO patent application 2010010116

  • Mitchell WJ (1998) Physiology of carbohydrate to solvent conversion by clostridia. Adv Microb Physiol 39:31–130

    Article  CAS  Google Scholar 

  • Nielsen J, Villadsen J, Gunnar L (2003) Bioreaction engineering principles. Kluwer Academic/Plenum Publisher, New York

    Google Scholar 

  • Pronk JT, Kuijper SM, Toirkens MJ, Winkler R, van Dijken H, de Laat W (2005) Engineering Saccharomyces cerevisiae for xylose utilization. J Biotechnol 118:S86–S87

    Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Shaw AJ, Jenney FE, Adams MWW, Lynd LR (2008a) End-product pathways in the xylose fermenting bacterium, Thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 42:453–458

    Article  CAS  Google Scholar 

  • Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008b) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. PNAS 105(37):13769–13774

    Article  CAS  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463

    Article  CAS  Google Scholar 

  • Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicelluloses. Biochem Soc Trans 32:283–289

    Article  CAS  Google Scholar 

  • Sonne-Hansen J, Mathrani IM, Ahring BK (1993) Xylanolytic anaerobic thermophiles from Icelandic hot-springs. Appl Microbiol Biotechnol 38:537–541

    Article  CAS  Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin MI, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–40

    Article  CAS  Google Scholar 

  • Tyurin MV, Desai SG, Lynd LR (2004) Electrotransformation of Clostridium thermocellum. Appl Environ Microbiol 70:883–890

    Article  CAS  Google Scholar 

  • Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 176(5):1443–1450

    CAS  Google Scholar 

  • Yanase H, Nozaki K, Okamoto K (2005) Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol Lett 27:259–263

    Article  CAS  Google Scholar 

  • Yao S (2008) Metabolic engineering of ethanol production in Thermoanaerobacter mathranii BG1. PhD Thesis, Risø -Technical University of Denmark, Roskilde

  • Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocelluloses: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  • Zeikus JG, Ben-Bassat A, Ng TK, Lamed RJ (1981) Thermophilic ethanol fermentations. In: Hollaender A (ed) Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York, p 441

    Google Scholar 

Download references

Acknowledgments

We thank Slawomir Dabrowski (A&A Biotechnology, Poland) for kindly providing the pYPA vector, Karin Marie Due for taking good care of the continuous reactor, and Klaus Breddam for scientific and linguistic proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, S., Mikkelsen, M.J. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii . Appl Microbiol Biotechnol 88, 199–208 (2010). https://doi.org/10.1007/s00253-010-2703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2703-3

Keywords

Navigation