Skip to main content
Log in

Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The isolation of a new anaerobic thermophilic bacterium, Thermoanaerobium brockii, from volcanic features is described. Successful enrichment required a complex medium containing glucose or other fermentable sugars and incubation temperatures of 55–80° C. Strains of T. brockii were gram positive, rods of uneven length that existed singly, in pairs, chains or filaments. Electron micrographs of thin sections of cell revealed a monolayered cell wall and a constrictive or “pinching off” cell division process. The organism was nonsporeforming, obligately anaerobic and chemoorganotrophic. The optimal temperature for growth was 65–70° C, the maxium was below 85° C and the minimum above 35° C. The doubling time at the optimal temperature for growth was about 1 h. The DNA base composition of three strains of T. brockii varied from 30.0–31.4 mol % guanosine plus cytosine. Fermentable carbohydrates included glucose, sucrose, maltose, lactose, cellobiose and insoluble starch. The fermentation products of cells grown on glucose were ethanol, lactic acid, acetic acid, hydrogen and carbon dioxide. Growth of all strains tested was inhibited by fairly low concentrations of cycloserine, penicillin, streptomycin, tetracycline and chloramphenicol. The possible ecological, evolutionary, and industrial significance, and taxonomic relationships of Thermoanaerobium are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TYEG:

complex medium containing mineral salts, 0.3% yeast extract, 1.0% tryptone and 0.5% glucose

O.D.:

optical density

G+C:

guanosine plus cytosine

References

  • Badziong, W., Thauer, R. K., Zeikus, J. G.: Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch. Microbiol. 116, 41–49 (1978)

    PubMed  Google Scholar 

  • Brock, T. D.: Thermophilic microorganisms and life at high temperatures. Berlin-Heidelberg-New York: Springer (1978)

    Google Scholar 

  • Brock, T. D., Freeze, H.: Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J. Bacteriol. 98, 289–297 (1969)

    PubMed  Google Scholar 

  • Bryant, M. P.: Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25, 1324–1328 (1972)

    PubMed  Google Scholar 

  • Buchanan, R. E., Gibbons, N. E.: Bergey's Manual of Determinative Bacteriology, 8th ed. Baltimore: The Williams and Wilkins Co. (1974)

    Google Scholar 

  • DeLey, J.: Reexamination of the association between melting point, buoyant density and the chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101, 738–754 (1970)

    PubMed  Google Scholar 

  • Doemel, W. N., Brock, T. D.: Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl. Environ. Microbiol. 34, 433–452 (1977)

    Google Scholar 

  • Duncan, C. L., Strong, D. H.: Improved medium for sporulation of Clostridium perfringens. Appl. Microbiol. 16, 82–89 (1968)

    PubMed  Google Scholar 

  • Gilleland, H. E., Murray, R. G. E.: Demonstration of cell division by septation in a variety of gram-negative rods. J. Bacteriol. 121, 721–725 (1975)

    PubMed  Google Scholar 

  • Gunter, B. D., Musgrave, B. C.: Gas chromatographic measurements of hydrothermal emanations at Yellowstone National Park. Geochim. Cosmochim. Acta 30, 1175–1189 (1966)

    Article  Google Scholar 

  • Hollaus, F., Sleytr, U.: On the taxonomy and fine structure of some hyperthermophilic saccharolytic clostridia. Arch. Mikrobiol. 86, 129–146 (1972)

    PubMed  Google Scholar 

  • Hsu, E. J., Ordal, Z. J.: Comparative metabolism of vegetative and sporulating cultures of Clostridium thermosaccharolyticum. J. Bacteriol. 102, 369–376 (1970)

    PubMed  Google Scholar 

  • Kushner, D. J. (ed.): Microbial Life in Extreme Environments. London: Academic Press 1978

    Google Scholar 

  • Lee, L. K., Ordal, Z. J.: Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J. Bacteriol. 94, 530–536 (1967)

    PubMed  Google Scholar 

  • Ljungdahl, L. G.: Thermophilic microorganisms. Adv. Microbiol. Physiol. (in press)

  • Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218 (1961)

    Google Scholar 

  • Matteuzzi, D., Hollaus, F., Biavati, B.: Proposal of neotype for Clostridium thermohydrosulfuricum and the merging of Clostridium tartarivorum with Clostridium thermosaccharolyticum. Int. J. Syst. Bacteriol. 28, 528–531 (1978)

    Google Scholar 

  • Nelson, D. R., Zeikus, J. G.: Rapid method for the radioisotopic analysis of gaseous products of anaerobic metabolism. Appl. Environ. Microbiol. 28, 258–261 (1974)

    Google Scholar 

  • Sleytr, U. B., Glauert, A. M.: Ultrastructure of the cell walls of two closely related clostridia that possess different regular arrays of surface subunits. J. Bacteriol. 126, 869–882 (1976)

    PubMed  Google Scholar 

  • Thauer, R. K., Rupprecht, E., Jungermann, K.: Separation of 14C-formate from CO2 fixation metabolites by isoionic exchange chromatography. Anal. Biochem. 38, 461–468 (1970)

    PubMed  Google Scholar 

  • Weimer, P. R., Zeikus, J. G.: Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl. Environ. Microbiol. 33, 289–297 (1977)

    PubMed  Google Scholar 

  • Williams, R. A. D.: Caldoactive and thermophilic bacteria and their thermostable proteins. Sci. Prog. (Oxford) 62, 373–394 (1975)

    Google Scholar 

  • Winfrey, M., Zeikus, J. G.: Microbial methanogenesis and acetate metabolism in a meromictic lake. Appl. Environ. Microbiol. 37, 244–253 (1979)

    PubMed  Google Scholar 

  • Woese, C. R., Magrum, L. J., Fox, G. E.: Archaebacteria. J. Mol. Evol. 11, 245–252 (1978)

    PubMed  Google Scholar 

  • Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem. 238, 2882–2886 (1963)

    PubMed  Google Scholar 

  • Zeikus, J. G., Brock, T. D.: Effects of thermal additions from the Yellowstone Geyser Basins on the bacteriology of the Firehole River. Ecology 53, 283–290 (1972)

    Google Scholar 

  • Zeikus, J. G., Bowen, V. G.: Fine structure of Methanospirillum hungatii. J. Bacteriol. 121, 373–380 (1975)

    PubMed  Google Scholar 

  • Zeikus, J. G., Winfrey, M. R.: Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31, 99–107 (1976)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeikus, J.G., Hegge, P.W. & Anderson, M.A. Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122, 41–48 (1979). https://doi.org/10.1007/BF00408044

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408044

Key words

Navigation