Skip to main content
Log in

Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea

  • Review
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Tea, which is processed by the tender shoots or leaves of tea plant (Camellia sinensis), is one of the most popular nonalcoholic beverages in the world and has numerous health benefits for humans. Along with new progress in biotechnologies, the refined chromosome-scale reference tea genomes have been achieved, which facilitates great promise for the understanding of fundamental genomic architecture and evolution of the tea plants. Here, we summarize recent achievements in genome sequencing in tea plants and review the new progress in origin and evolution of tea plants by population sequencing analysis. Understanding the genomic characterization of tea plants is import to improve tea quality and accelerate breeding in tea plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54:609

    Article  CAS  PubMed  Google Scholar 

  • Afridi SG, Ahmad H, Khan IA, Alam M (2011) DNA landmarks for genetic diversity assessment in tea genotypes using RAPD markers. Afr J Biotech 10:15477

    Article  CAS  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101

    Article  CAS  PubMed  Google Scholar 

  • Ban Q, Wang X, Pan C, Wang Y, Kong L, Jiang H, Xu Y, Wang W, Pan Y, Li Y, Jiang C (2017) Comparative analysis of the response and gene regulation in cold resistant and susceptible tea plants. PLoS ONE 12:e0188514

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Gao QK, Chen DM, Xu CJ (2005) The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.)] O. Biodiv Conserv 14:1433

    Article  Google Scholar 

  • Chen ZM, Sun XL, Dong WX (2012) Genetics and chemistry of the resistance of tea plant to pests. Global tea breeding. Springer, Berlin

    Chapter  Google Scholar 

  • Chen JD, Zheng C, Ma JQ, Jiang CK, Ercisli S, Yao MZ, Chen L (2020) The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Hortic Res 7:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li R, Ma Y, Lei S, Ming R, Zhang X (2021) The complete chloroplast genome sequence of Camellia sinensis var. sinensis cultivar Tieguanyin (Theaceae). Mitochondrial DNA B Resour 6:395

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhiman N, Kumar N, Bhattacharya A, Ahuja P, Singh K (2015) Development of transgenic tea plants from leaf explants by the biolistic gun method and their evaluation. Plant Cell Tissue Organ Cult: Int J Vitro Cult Higher Plants 123:245

    Article  Google Scholar 

  • Drew L (2019) The growth of tea. Nature 566:S2

    Article  CAS  PubMed  Google Scholar 

  • Fang W, Cheng H, Duan Y, Jiang X, Li X (2012) Genetic diversity and relationship of clonal tea (Camellia sinensis) cultivars in China as revealed by SSR markers. Plant Syst Evol 298:469

    Article  Google Scholar 

  • Furukawa K, Koizumi M, Hayashi W, Mochizuki H, Yamaki K (2020) Pretreatment and posttreatment in the biolistic transformation of tea plant (Camellia sinensis) somatic embryos. Plant Biotechnol (tokyo) 37:195

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Guo Y, Wang P, Wang Y, Ni D (2017) Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta 246:1139

    Article  CAS  PubMed  Google Scholar 

  • Hao X, Wang B, Wang L, Zeng J, Yang Y, Wang X (2018) Comprehensive transcriptome analysis reveals common and specific genes and pathways involved in cold acclimation and cold stress in tea plant leaves. Sci Hortic 240:354

    Article  CAS  Google Scholar 

  • Harbowy ME, Balentine DA, Cai APD (1997) Tea Chemistry. Crit Rev Plant Sci 16:415

    Article  CAS  Google Scholar 

  • Heiss ML, Heiss RJ (2007) The story of tea: a cultural history and drinking guide. Random House, New York

    Google Scholar 

  • Hu Y, Zhang M, Lu M, Wu Y, Jing T, Zhao M, Zhao Y, Feng Y, Wang J, Gao T, Zhou Z, Wu B, Jiang H, Wan X, Schwab W, Song C (2022) Salicylic acid carboxyl glucosyltransferase UGT87E7 regulates disease resistance in Camellia sinensis. Plant Physiol 188:1507

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Yao Q, Xia E, Gao L (2018) Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor. J Agric Food Chem 66:9828

    Article  CAS  PubMed  Google Scholar 

  • Jayaswall K, Mahajan P, Singh G, Parmar R, Seth R, Raina A, Swarnkar MK, Singh AK, Shankar R, Sharma RK (2016) Transcriptome analysis reveals candidate genes involved in blister blight defense in tea (Camellia sinensis (L.) Kuntze). Sci Rep 6:30412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323

    Article  CAS  PubMed  Google Scholar 

  • Kaundun SS, Matsumoto S (2003) Development of CAPS markers based on three key genes of the phenylpropanoid pathway in tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theor Appl Genet 106:375

    Article  CAS  PubMed  Google Scholar 

  • Kottawa-Arachchi JD, Gunasekare MTK, Ranatunga MAB (2019) Biochemical diversity of global tea [Camellia sinensis (L.) O. Kuntze] germplasm and its exploitation: a review. Genetic Resour Crop Evol 66:259

    Article  CAS  Google Scholar 

  • Li XW, Feng ZG, Yang HM, Zhu XP, Liu J, Yuan HY (2010) A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco. Biochem Biophys Res Commun 394:354

    Article  CAS  PubMed  Google Scholar 

  • Li MM, Li JH, Del TP, Corajod J, Fu CX (2013) Phylogenetics and biogeography of Theaceae based on sequences of plastid genes. J Syst Evol 51:396

    Article  Google Scholar 

  • Li CF, Zhu Y, Yu Y, Zhao QY, Wang SJ, Wang XC, Yao MZ, Luo D, Li X, Chen L, Yang YJ (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis). BMC Genomics 16:560

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Lei S, Du K, Li L, Pang X, Wang Z, Wei M, Fu S, Hu L, Xu L (2016) RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 6:36463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Xiang F, Zhong M, Zhou L, Liu H, Li S, Wang X (2017) Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis). Sci Rep 7:1693

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Li M, Yang Y, Wang F, Wang F, Li C (2021) Aptamer-linked CRISPR/Cas12a-based immunoassay. Anal Chem 93:3209

    Article  CAS  PubMed  Google Scholar 

  • Li L, Hu Y, He M, Zhang B, Wu W, Cai P, Huo D, Hong Y (2021) Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 22:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin P, Wang K, Wang Y, Hu Z, Yan C, Huang H, Ma X, Cao Y, Long W, Liu W, Li X, Fan Z, Li J, Ye N, Ren H, Yao X, Yin H (2022) The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication. Genome Biol 23:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang DZ, Zhang SZ, Zhao HM (2015) Global expansion strategy of Chinese herbal tea beverage. Adv J Food Sci Technol 7:739

    Article  Google Scholar 

  • Liu S, An Y, Li F, Li S, Wei C (2018) Genome-wide identification of simple sequence repeats and development of polymorphic SSR markers for genetic studies in tea plant (Camellia sinensis). Mol Breed. https://doi.org/10.1007/s11032-018-0824-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zhang J, Yang Y, Yang X, Xu B, Yang W, Tong T, Jin S, Shen C, Rao H, Li X, Lu H, Fuller DQ, Wang L, Wang C, Xu D, Wu N (2016) Earliest tea as evidence for one branch of the silk road across the Tibetan Plateau. Sci Rep 6:18955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Gao L-Z, Zhang Q-J (2022) A high-quality genome assembly of the mitochondrial genome of the oil-tea tree Camellia gigantocarpa (Theaceae). Diversity 14:850

    Article  CAS  Google Scholar 

  • Ma Q, Chen C, Zeng Z, Zou Z, Li H, Zhou Q, Chen X, Sun K, Li X (2018) Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics 19:289

    Article  PubMed  PubMed Central  Google Scholar 

  • Misako K, Kouichi M (2004) Caffeine synthase and related methyltransferases in plants. Front Biosci 9:1833

    Article  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Transient RNAi based gene silencing of glutathione synthetase reduces glutathione content in Camellia sinensis (L.) O. Kuntze somatic embryos. Biol Plant 52:381

    Article  CAS  Google Scholar 

  • Mohanpuria P, Kumar V, Ahuja PS, Yadav SK (2011) Agrobacterium-mediated silencing of caffeine synthesis through root transformation in Camellia sinensis L. Mol Biotechnol 48:235

    Article  CAS  PubMed  Google Scholar 

  • Mondal TK (2003) Micropropagation of tea (Camellia sinensis L.). Kluwer Publication, The Netherlands

    Book  Google Scholar 

  • Mondal T, Bhattacharya A, Ahuja P, Chand P (2001) Transgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 20:712

    Article  CAS  Google Scholar 

  • Mukhopadhyay M, Mondal TK, Chand PK (2016) Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review. Plant Cell Rep 35:255

    Article  CAS  PubMed  Google Scholar 

  • Ohsako T, Ohgushi T, Motosugi H, Oka K (2008) Microsatellite variability within and among local landrace populations of tea, Camellia sinensis (L.) O. Kuntze, in Kyoto, Japan. Genetic Resour Crop Evol 55:1047

    Article  Google Scholar 

  • Peng J, Zhao Y, Dong M, Liu S, Hu Z, Zhong X, Xu Z (2021) Exploring the evolutionary characteristics between cultivated tea and its wild relatives using complete chloroplast genomes. BMC Ecol Evol 21:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prince LM, Parks CR (2001) Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. Am J Bot 88:2309

    Article  CAS  PubMed  Google Scholar 

  • Qiao D, Tang M, Jin L, Mi X, Chen H, Zhu J, Liu S, Wei C (2022) A monoterpene synthase gene cluster of tea plant (Camellia sinensis) potentially involved in constitutive and herbivore-induced terpene formation. Plant Physiol Biochem 184:1

    Article  CAS  PubMed  Google Scholar 

  • Rana MM, Han ZX, Song DP, Liu GF, Li DX, Wan XC, Karthikeyan A, Wei S (2016) Effect of medium supplements on Agrobacterium rhizogenes mediated hairy root induction from the callus tissues of Camellia sinensis var. sinensis. Int J Mol Sci 17:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawal HC, Kumar PM, Bera B, Singh NK, Mondal TK (2020) Decoding and analysis of organelle genomes of Indian tea (Camellia assamica) for phylogenetic confirmation. Genomics 112:659

    Article  CAS  PubMed  Google Scholar 

  • Rietveld A, Wiseman S (2003) Antioxidant effects of tea: evidence from human clinical trials. J Nutr 133:3285s

    Article  CAS  PubMed  Google Scholar 

  • Sandal I, Saini U, Lacroix B, Bhattacharya A, Ahuja PS, Citovsky V (2007) Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Rep 26:169

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Ma CY, Qi DD, Lv HP, Yang T, Peng QH, Chen ZM, Lin Z (2017) Erratum to: transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biol 17:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Song DP, Feng LY, Rana MM, Gao MJ, Wei S (2014) Effects of catechins on Agrobacterium-mediated genetic transformation of Camellia sinensis. Plant Cell Tissue Organ Cult 119:27

    Article  CAS  Google Scholar 

  • Song C, Härtl K, McGraphery K, Hoffmann T, Schwab W (2018) Attractive but toxic: emerging roles of glycosidically bound volatiles and glycosyltransferases involved in their formation. Mol Plant 11:1225

    Article  CAS  PubMed  Google Scholar 

  • Steinwand MA, Ronald PC (2020) Crop biotechnology and the future of food. Nat Food 1:273

    Article  Google Scholar 

  • Suzuki T, Waller GR (1988) Metabolism and analysis of caffeine and other methylxanthines in coffee, tea, cola, guarana and cacao. In: Linskens H-F, Jackson JF (eds) Analysis of nonalcoholic beverages. Springer, Berlin, pp 184–220

    Chapter  Google Scholar 

  • Tan LQ, Peng M, Xu LY, Wang LY, Chen SX, Zou Y, Qi GN, Cheng H (2015) Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genet Genomes 11:1

    Article  Google Scholar 

  • Tanaka J, Taniguchi F, Hirai N, Yamaguchi S (2006) Estimation of the genome size of tea (Camellia sinensis), Camellia (C. japonica), and their interspecific hybrids by flow cytometry. Chagyo Kenkyu Hokoku (Tea Res J) 101:1

    Google Scholar 

  • Tong W, Li R, Huang J, Zhao H, Ge R, Wu Q, Mallano AI, Wang Y, Li F, Deng W, Li Y, Xia E (2021) Divergent DNA methylation contributes to duplicated gene evolution and chilling response in tea plants. Plant J 106:1312

    Article  CAS  PubMed  Google Scholar 

  • Tsou CH (1998) Early floral development of Camellioideae (Theaceae). Am J Bot 85:1531

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38:201

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, He H, Min TL, Zhou LH, Fritsch PW (2006) The phylogenetic position of Apterosperma (Theaceae) based on morphological and karyotype characters. Plant Syst Evol 260:39

    Article  Google Scholar 

  • Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wang Y, Cao H, Hao X, Zeng J, Yang Y, Wang X (2016) Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae. PLoS ONE 11:e0148535

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YN, Tang L, Hou Y, Wang P, Yang H, Wei CL (2016) Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 16:383

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zou Z, Li Q, Sun K, Chen X, Li X (2017) The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia sinensis. Sci Rep 7:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, Li M, Jiang X, Wang Y, Gao L, Xia T (2018) Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. J Agric Food Chem 66:4281

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Li A, Cheng H, Wang L, Cui P, Jin J, Wang X, Wei K, Ai C, Zhao S, Wu Z, Li Y, Liu B, Wang GD, Chen L, Ruan J, Yang Y (2020) Population sequencing enhances understanding of tea plant evolution. Nat Commun 11:4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen F, Ma Y, Zhang T, Sun P, Lan M, Li F, Fang W (2021) An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Hortic Res 8:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Liu J, Ma H, Cheng Q, Huang Y, Zhao J, Huo S, Xue X, Liang Z, Liang XJ (2013) Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett 13:2528

    Article  PubMed  Google Scholar 

  • Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018) Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proc Natl Acad Sci USA 115:E4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg BBA, Bealer BK (2002) The world of caffeine: the science and culture of the world’s most popular drug. Routledge

    Google Scholar 

  • Wheeler DS, Wheeler WJ (2010) The medicinal chemistry of tea. Drug Dev Res 61:45

    Article  Google Scholar 

  • Willson KC, Clifford MN (1992) Tea: cultivation to consumption. Ecol Freshw Fish 5:175

    Google Scholar 

  • Wu Z, Liao X, Zhang X, Tembrock LR, Broz A (2020) Genomic architectural variation of plant mitochondria—a review of multichromosomal structuring. J Syst Evol 60:160–168

    Article  Google Scholar 

  • Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, Kim C, Zhang Y, Liu Y, Zhu T, Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang JJ, Mao SY, Jiao JY, Zhang D, Zhao Y, Zhao YJ, Zhang LP, Liu YL, Liu BY, Yu Y, Shao SF, Ni DJ, Eichler EE, Gao LZ (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Mol Plant 10:866

    Article  CAS  PubMed  Google Scholar 

  • Xia E, Tong W, Hou Y, An Y, Chen L, Wu Q, Liu Y, Yu J, Li F, Li R, Li P, Zhao H, Ge R, Huang J, Mallano AI, Zhang Y, Liu S, Deng W, Song C, Zhang Z, Zhao J, Wei S, Zhang Z, Xia T, Wei C, Wan X (2020) The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Mol Plant 13:1013

    Article  CAS  PubMed  Google Scholar 

  • Xia EH, Tong W, Wu Q, Wei S, Zhao J, Zhang ZZ, Wei CL, Wan XC (2020) Tea plant genomics: achievements, challenges and perspectives. Hortic Res 7:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F (2022) Nanotechnology strategies for plant genetic engineering. Adv Mater 34:e2106945

    Article  PubMed  Google Scholar 

  • Yang CS, Hong J (2013) Prevention of chronic diseases by tea: possible mechanisms and human relevance. Annu Rev Nutr 33:161

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Liang Y (2014) Tea plant clonal varieties in China. Shanghai Scientific & Technical, Shanghai

    Google Scholar 

  • Yang Z, Baldermann S, Watanabe N (2013) Recent studies of the volatile compounds in tea. Food Res Int 53:585

    Article  CAS  Google Scholar 

  • Yang H, Wei CL, Liu HW, Wu JL, Li ZG, Zhang L, Jian JB, Li YY, Tai YL, Zhang J, Zhang ZZ, Jiang CJ, Xia T, Wan XC (2016) Genetic divergence between Camellia sinensis and its wild relatives revealed via genome-wide SNPs from RAD sequencing. PLoS ONE 11:e0151424

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao MZ, Ma CL, Qiao TT, Jin JQ, Chen L (2012) Diversity distribution and population structure of tea germplasms in China revealed by EST-SSR markers. Tree Genet Genomes 8:205

    Article  Google Scholar 

  • Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, Yang SX, Li DZ (2017) Insights into the historical assembly of East Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol 215:1235

    Article  CAS  PubMed  Google Scholar 

  • Yue C, Cao HL, Chen D, Lin HZ, Wang Z, Hu J, Yang GY, Guo YQ, Ye NX, Hao XY (2018) Comparative transcriptome study of hairy and hairless tea plant (Camellia sinensis) shoots. J Plant Physiol 229:41

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Watanabe N, Yang Z (2019) Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Crit Rev Food Sci Nutr 59:2321

    Article  CAS  PubMed  Google Scholar 

  • Zhang CC, Wang LY, Wei K, Wu LY, Li HL, Zhang F, Cheng H, Ni DJ (2016) Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Cai M, Yu X, Wang L, Guo C, Ming R, Zhang J (2017) Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress. Tree Genetics Genomes 13:1–17

    Article  Google Scholar 

  • Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Li W, Gao CW, Zhang D, Gao LZ (2019) Deciphering tea tree chloroplast and mitochondrial genomes of Camellia sinensis var. assamica. Sci Data 6:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Feng X, Wang Y, Xu W, Huang K, Hu M, Zhang C, Yuan H (2019) Advances in research on functional genes of tea plant. Gene 711:143940

    Article  CAS  PubMed  Google Scholar 

  • Zhang QJ, Li W, Li K, Nan H, Shi C, Zhang Y, Dai ZY, Lin YL, Yang XL, Tong Y, Zhang D, Lu C, Feng LY, Wang CF, Liu XX, Huang JA, Jiang WK, Wang XH, Zhang XC, Eichler EE, Liu ZH, Gao LZ (2020) The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Mol Plant 13:935

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, Zhang X, Scossa F, Alseekh S, Zhang Q, Wang P, Xu L, Schmidt MH, Jia X, Li D, Zhu A, Guo F, Chen W, Ni D, Usadel B, Fernie AR, Wen W (2020) Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nat Commun 11:3719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Xu W, Ni D, Wang M, Guo G (2020) Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC Plant Biol 20:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chen S, Shi L, Gong D, Zhang S, Zhao Q, Zhan D, Vasseur L, Wang Y, Yu J, Liao Z, Xu X, Qi R, Wang W, Ma Y, Wang P, Ye N, Ma D, Shi Y, Wang H, Ma X, Kong X, Lin J, Wei L, Ma Y, Li R, Hu G, He H, Zhang L, Ming R, Wang G, Tang H, You M (2021) Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nat Genet 53:1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, He J, Xiao Y, Zhang Y, Liu Y, Wan S, Liu L, Dong Y, Liu H, Yu Y (2021) CsGSTU8, a glutathione S-transferase from Camellia sinensis, is regulated by CsWRKY48 and plays a positive role in drought tolerance. Front Plant Sci 12:795919

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhao L, Folk RA, Zhao JL, Zamora NA, Yang SX, Soltis DE, Soltis PS, Gao LM, Peng H, Yu XQ (2022) Phylotranscriptomics of Theaceae: generic-level relationships, reticulation and whole-genome duplication. Ann Bot 129:457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li L, Lang Z, Li D, He Y, Zhao Y, Tao H, Wei J, Li Q, Hong G (2022) Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. Front Plant Sci 13:1065261

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Liu Z, Li S, Xiong T, Ye F, Han Y, Sun M, Cao J, Luo T, Zhang C, Chen J, Zhang W, Lian S, Yuan H (2022) Effect of prior drought and heat stress on Camellia sinensis transcriptome changes to Ectropis oblique (Lepidoptera: Geometridae) resistance. Genomics 114:110506

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Wang Y, Ding Z, Zhao L (2016) Global transcriptional analysis reveals the complex relationship between tea quality, leaf senescence and the responses to cold-drought combined stress in Camellia sinensis. Front Plant Sci 7:1858

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank Chi Zhang and Hongyu Yuan for their input in writing the review. We would also like to thank Lei Wang for his helpful comments in discussion.

Funding

This work was supported by the National Natural Science Foundation of China (32170351), the Science and Technology Project of Henan Province (212102110154) and Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Contributions

ZBZ constructed the manuscript. ZBZ, TX and JHC wrote the manuscript. ZWZ, JJC, YRC, FY and TL participated in figure preparation and manuscript revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zai-Bao Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling editor: Joana Projecto-Garcia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZB., Xiong, T., Chen, JH. et al. Understanding the Origin and Evolution of Tea (Camellia sinensis [L.]): Genomic Advances in Tea. J Mol Evol 91, 156–168 (2023). https://doi.org/10.1007/s00239-023-10099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-023-10099-z

Keywords

Navigation