Skip to main content
Log in

Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Tea is a very popular and healthy nonalcoholic beverage worldwide. As an evergreen woody plant, the cultivation of tea plants (Camellia sinensis) is challenged by biotic stresses, and one of which is feeding of Ectropis oblique. In China, E. oblique infestation causes serious damages in many tea cultivation areas. Tea plants have evolved sophisticated strategies to cope with attack by E. oblique. To elucidate the molecular mechanisms of the response to E. oblique in tea plants, the differential gene expression profiles between the E. oblique damage-induced tea plants and undamaged control using RNA sequencing (RNA-Seq) were obtained. A total of 1859 differentially expressed genes were identified, including 949 upregulated and 910 downregulated genes. Overall, 90 signal transduction genes, 100 anti-insect responsive transcription factors, 50 genes related to phenylpropanoid biosynthesis, 41 unigenes related to herbivore-induced plant volatiles (HIPVs) biosynthesis, and 8 caffeine biosynthesis genes were found to be differentially regulated. Metabolic pathway analysis indicated that plant secondary metabolites and the signaling pathways may play an important role in defense against insects, and a closer examination at the expression of some crucial genes revealed differential expression patterns after feeding by E. oblique. Furthermore, quantitative RT-PCR (qRT-PCR) analysis further confirmed the results of RNA-Seq. Our dataset provides the most comprehensive sequence resource available for studying the resistance to E. oblique in tea, which will benefit our understanding of the overall mechanisms underlying inducible defenses responses, and may be useful to create novel prevention measures against insects to reduce pesticide usage in eco-friendly tea farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AACT:

Acetoacetyl CoA thiolase

AAT:

Alcohol acyltransferase

ADH:

Alcohol dehydrogenase

ANR:

Anthocyanidin reductase

bZIP:

Basic-region leucine zipper protein

C:

Catechin

Cab:

Chlorophyll a/b binding protein

CAD:

Cinnamyl alcohol dehydrogenase

CaM:

Calmodulin

cDNA-AFLP:

cDNA-amplified fragment length polymorphisms

CDPKs:

Ca2+-dependent protein kinases

CHS:

Chalcone synthase

COG:

Clusters of orthologous groups of protein

CTAB:

Cetyltrimethyl ammonium bromide

DAHPS:

3-Deoxy-darabinoheptulosonate-7-p-synthase

DDRT-PCR:

Display of reverse transcriptase polymerase chain reaction polymerase chain reaction

DEGs:

Differentially expressed genes

DFR:

Dihydroflavonol-4-reductase

DXR:

1-Deoxy-d-xylulose-5-phosphate-reductoisomerase

EC:

Epicatechin

ECG:

Epicatechin gallate

EGC:

Epigallocatechin

EGCG:

Epigallocatechin gallate

EPPS:

5-Enolpyruvylshikimate 3-phosphate synthase

ET:

Ethylene

FDR:

False discovery rate

FPKM:

Fragments per kilobase of exon model per million mapped reads

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GC:

Gallocatechin

GGPPSase:

Geranylgeranyl diphosphate synthase

GLVs:

Green leaf volatiles

GO:

Gene ontology

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

HMGS:

3-Hydroxy-3-methylglutaryl-CoA synthase

HPL:

Hydroperoxide lyase

IFS:

Isoflavone synthase

HIPVs:

Herbivore induced plant volatiles

JA:

Jasmonic acid

JAZ:

Jasmonate ZIM-domain

KEGG:

Kyoto encyclopedia of genes and genomes

LOX:

Lipoxidase

LRR-RLKs:

Leucine-rich repeat receptor-like kinases

MAPKs:

Mitogen-activated protein kinases

MCS:

2-C-Methyl-d-erythtitol 2,4-cyclodiphosphate synthase

MEP:

2-C-Methyl-d-erythritol 4-phosphate

MVA:

Mevalonate

PAL:

Phenylalanine-ammonia lyase

PMD:

Pyrophosphomevalonate decarboxylase

qRT-PCR:

Quantitative reverse transcriptase Polymerase Chain Reaction

RNA-Seq:

RNA sequencing

ROS:

Reactive oxygen species

SA:

Salicylic acid

SAMS:

S-Adenosylmethionine synthase

SAMT:

Salicylic acid carboxyl methyltransferase

TCS:

Caffeine synthase

TFs:

Transcription factors

TPS:

Terpene synthase

References

  • Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Ribeiro-Alves M, Oliveira-Neto OB, de Macedo LL, Silveira S, Grossi-de-Sa MF, Martinelli AP, Alves-Ferreira M (2014) Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae. BMC Genomics 15:854

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashihara H, Crozier A (2001) Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci 6:407–413

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones J (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  • Boter M, Ruiz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai XM, Sun XL, Dong WX, Wang GC, Chen ZM (2014) Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1–14

    Article  CAS  Google Scholar 

  • Chen MS (2008) Inducible direct plant defense against insect herbivores: a review. Insect Sci 15:101–114

    Article  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Day RB, Shibuya N, Minami E (2003) Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor. Biochim Biophys Acta 1625:261–268

    Article  CAS  PubMed  Google Scholar 

  • De Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    Article  PubMed  Google Scholar 

  • Deng WW, Wu YL, Li YY, Tan Z, Wei CL (2016) Molecular cloning and characterization of hydroperoxide lyase gene in the leaves of tea plant (Camellia sinensis). J Agric Food Chem 64:1770–1776

    Article  CAS  PubMed  Google Scholar 

  • Deng WW, Zhang M, Wu JQ, Jiang ZZ, Tang L, Li YY, Wei CL, Jiang CJ, Wan XC (2013) Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. J Plant Physiol 170:272–282

    Article  CAS  PubMed  Google Scholar 

  • Dicke M, van Poecke RMP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27–42

    Article  CAS  Google Scholar 

  • Dong F, Yang ZY, Baldermann S, Sato Y, Asai T, Watanabe N (2011) Herbivore-induced volatiles from tea (Camellia sinensis) plants and their involvement in intraplant communication and changes in endogenous nonvolatile metabolites. J Agr Food Chem 59:13131–13135

    Article  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr Opin Biotechol 15:155–161

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–U130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Hill MG, Wurms KV, Davy MW, Gould E, Allan A, Mauchline NA, Luo Z, Ah Chee A, Stannard K, Storey RD, Rikkerink EH (2015) Transcriptome analysis of kiwifruit (Actinidia chinensis) bark in response to armoured scale insect (Hemiberlesia lataniae) feeding. PLoS One 10:e0141664

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho CT, Lin JK, Shahidi F (2009) Tea and tea products: chemistry and health promoting properties. CRC Press, Boca Raton FL, NW

    Google Scholar 

  • Hoffmann-Campo CB, Ramos JA, de Oliveira MCN, Oliveira LJ (2006) Detrimental effect of rutin on Anticarsia gemmatalis. Pesqui Agropecu Bras 41:1453–1459

    Article  Google Scholar 

  • Hollingsworth RG, Armstrong JW, Campbell E (2002) Pest control: caffeine as a repellent for slugs and snails. Nature 417:915–916

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Jalali BL, Bhargava S, Kamble A (2006) Signal transduction and transcriptional regulation of plant defence responses. J Phytopathol 154:65–74

    Article  CAS  Google Scholar 

  • Jiang XL, Liu YJ, Li WW, Zhao L, Meng F, Wang YS, Tan HR, Yang H, Wei CL, Wan XC, Gao LP, Xia T (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant (Camellia sinensis). PLoS One 8

  • Jin L, Bhuiya MW, Li M, Liu X, Han J, Deng W, Wang M, Yu O, Zhang Z (2014) Metabolic engineering of Saccharomyces cerevisiae for caffeine and theobromine production. PLoS One 9, e105368

    Article  PubMed  PubMed Central  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci U S A 104:12205–12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katagiri F (2004) A global view of defense gene expression regulation-a highly interconnected signaling network. Curr Opin Plant Biol 7:506–511

    Article  CAS  PubMed  Google Scholar 

  • Kiep V, Vadassery J, Lattke J, Maass JP, Boland W, Peiter E, Mithofer A (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lim S, Kang KK, Jung YJ, Lee YH, Choi YE, Sano H (2011) Resistance against beet armyworms and cotton aphids in caffeine-producing transgenic chrysanthemum. Plant Biotechnol-Nar 28:393–395

    Article  CAS  Google Scholar 

  • Kim YS, Uefuji H, Ogita S, Sano H (2006) Transgenic tobacco plants producing caffeine: a potential new strategy for insect pest control. Transgenic Res 15:667–672

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Nadda G, Kumar S, Yadav SK (2013) Transgenic tobacco overexpressing tea cdna encoding dihydroflavonol 4-reductase and anthocyanidin reductase induces early flowering and provides biotic stress tolerance. PLoS One 8:e65535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lattanzio V, Arpaia S, Cardinali A, Di Venere D, Linsalata V (2000) Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J Agr Food Chem 48:5316–5320

    Article  CAS  Google Scholar 

  • Leiss KA, Choi YH, Verpoorte R, Klinkhamer PG (2011) An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem Rev 10:205–216

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Gregory BD, Ecker JR (2009) Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol 12:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang P, Zhou S, Sun Y, Liu N, Li X, Hou Y (2015) De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. BMC Genomics 16:753

    Article  PubMed  PubMed Central  Google Scholar 

  • Marguerat S, Bahler J (2010) RNA-seq: from technology to biology. Cell Mol Life Sci 67:569–579

    Article  CAS  PubMed  Google Scholar 

  • Mathavan S, Premalatha Y, Christopher MS (1985) Effects of caffeine and theophylline on the fecundity of four lepidopteran species. Exp Biol 44:133–138

    CAS  PubMed  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25:1126–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008a) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008b) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Dicke M (2010) Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can J Zool 88:628–667

    Article  CAS  Google Scholar 

  • Nathanson JA (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226:184–187

    Article  CAS  PubMed  Google Scholar 

  • Onkokesung N, Reichelt M, van Doorn A, Schuurink RC, van Loon JJA, Dicke M (2014) Modulation of flavonoid metabolites in Arabidopsis thaliana through overexpression of the MYB75 transcription factor: role of kaempferol-3,7-dirhamnoside in resistance to the specialist insect herbivore Pieris brassicae. J Exp Bot 65:2203–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onyilagha JC, Gruber MY, Hallett RH, Holowachuk J, Buckner A, Soroka JJ (2012) Constitutive flavonoids deter flea beetle insect feeding in Camelina sativa L. Biochem Syst Ecol 42:128–133

    Article  CAS  Google Scholar 

  • Pavani A, Chaitanya RK, Chauhan VK, Dasgupta A, Dutta-Gupta A (2015) Differential oxidative stress responses in castor semilooper, Achaea janata. J Invertebr Pathol 132:157–164

    Article  CAS  PubMed  Google Scholar 

  • Penaflor MF, Bento JM (2013) Herbivore-induced plant volatiles to enhance biological control in agriculture. Neotrop Entomol 42:331–343

    Article  CAS  PubMed  Google Scholar 

  • Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Zhang Y, Zhu X, Yang H, Zeng W, Zhao Q, Yuan H (2011) Identificationof genes up-regulated by Ectropic obliqua feeding in tea seedlings. Acta Hortic Sin 38:783–789

    Google Scholar 

  • Rasmussen MW, Roux M, Petersen M, Mundy J (2012) MAP kinase cascades in Arabidopsis innate immunity. Front Plant Sci 3:1–6

    Article  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA, Pearce G, Scheer J, Moura DS (2002) Polypeptide hormones. Plant Cell 14(Suppl):S251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria ME, Cambra I, Martinez M, Pozancos C, Gonzalez-Melendi P, Grbic V, Castanera P, Ortego F, Diaz I (2012) Gene pyramiding of peptidase inhibitors enhances plant resistance to the spider mite Tetranychus urticae. PLoS One 7:e43011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today's biology. Nat Methods 5:16–18

    Article  CAS  PubMed  Google Scholar 

  • Seybold SJ, Bohlmann J, Raffa KF (2000) Biosynthesis of coniferophagous bark beetle pheromones and conifer isoprenoids: evolutionary perspective and synthesis. Can Entomol 132:697–753

    Article  Google Scholar 

  • Shah J (2009) Plants under attack: systemic signals in defence. Curr Opin Plant Biol 12:459–464

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaler JS, Farag MA, Pare PW, Dicke M (2002) Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecol Lett 5:764–774

    Article  Google Scholar 

  • Thelen GC, Vivanco JM, Newingham B, Good W, Bais HP, Landres P, Caesar A, Callaway RM (2005) Insect herbivory stimulates allelopathic exudation by an invasive plant and the suppression of natives. Ecol Lett 8:209–217

    Article  Google Scholar 

  • Uefuji H, Tatsumi Y, Morimoto M, Kaothien-Nakayama P, Ogita S, Sano H (2005) Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant Mol Biol 59:221–227

    Article  CAS  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Zhang X (2010a) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang X C, Zhao Q Y, Ma C L, Zhang Z H, Cao H L, Kong Y M, Yue C, Hao X Y, Chen L, Ma J Q, Jin J Q, Li X, Yang Y J (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14

  • Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S (2010b) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11

  • War AR, Sharma HC (2014) Effect of jasmonic acid and salicylic acid induced resistance in groundnut on Helicoverpa armigera. Physiol Entomol 39:136–142

    Article  CAS  Google Scholar 

  • Wei CL, Gao XF, Ye AH, Yang YQ, Jiang CJ (2007) Differential gene expressionprofiles analysis of tea plant induced by tea looper (Ectropic oblique) attackusing DDRT-PCR. J Tea Sci 27:133–140

    CAS  Google Scholar 

  • Wheeler DS, Wheeler WJ (2004) The medicinal chemistry of tea. Drug Develop Res 61:45–65

    Article  CAS  Google Scholar 

  • Wu JQ, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Zhu LF, Tu LL, Liu LL, Yuan DJ, Jin L, Long L, Zhang XL (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J Exp Bot 62:5607–5621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HM, Xie SX, Wang L, Jing SL, Zhu XP, Li XW, Zeng W, Yuan HY (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic-Amsterdam 130:476–481

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q Y, Wang Y, Kong Y M, Luo D, Li X, Hao P (2011) Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics 12

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (NSFC) projects (31171608, 31300578), the Special Innovative Province Construction in Anhui Province (15czs08032), and the Doctoral Science Foundation of Anhui Agricultrual University (wd2016-02) grants. We thank Prof. Jian-Qiang Wu at Kuming Institute of Botany, Chinese Academy of Sciences, China, for discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ling Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ya-Nan Wang and Lei Tang contributed equally to this work.

Electronic Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YN., Tang, L., Hou, Y. et al. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Funct Integr Genomics 16, 383–398 (2016). https://doi.org/10.1007/s10142-016-0491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-016-0491-2

Keywords

Navigation