Skip to main content
Log in

Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A total of 299,113 unigenes were generated and 15,817 DEGs were identified. We identified candidate genes associated with the regulation of catechins biosynthesis during leaf development in tea plant.

The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most economically significant crops worldwide because of its positive effects on human health. The health benefits of tea are mainly attributed to catechins, which are the predominant polyphenols that accumulate in tea. Catechins are products of the phenylpropanoid and flavonoid biosynthetic pathways. Although catechins were identified in tea leaves long ago, the molecular mechanisms regulating catechins biosynthesis remain unclear. To identify candidate genes involved in catechins biosynthesis, we analyzed the transcriptomes of tea leaves during five different leaf stages of development using RNA-seq. Approximately 809 million high-quality reads were obtained, trimmed, and assembled into 299,113 unigenes with an average length of 565 bp. A total of 15,817 unigenes were differentially expressed during the different stages of leaf development. These differentially expressed genes were enriched in a variety of processes such as the regulation of the cell cycle, starch and sucrose metabolism, photosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis. Based on their annotations, 51 of these differentially expressed unigenes are involved in phenylpropanoid and flavonoid biosynthesis. Furthermore, transcription factors such as MYB, bHLH and MADS, which may involve in the regulation of catechins biosynthesis, were identified through co-expression analysis of transcription factors and structural genes. Real-time PCR analysis of candidate genes indicated a good correlation with the transcriptome data. These findings increase our understanding of the molecular mechanisms regulating catechins biosynthesis in the tea plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EC:

Epicatechin

ECG:

Epicatechin gallate

EGC:

Epigallocatechin

C:

Catechin

EGCG:

Epigallocatechin gallate

GCG:

Gallocatechin gallate

GC:

Gallocatechin

DEGs:

Differentially expressed genes

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KOG:

Eukaryotic Ortholog Groups

Nr:

NCBI non-redundant protein sequences

Nt:

NCBI non-redundant nucleotide sequences

References

  • An JP, Li HH, Song LQ, Su L, Liu X, You CX, Wang XF, Hao YJ (2016) The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Biochem 108:24–31

    Article  CAS  PubMed  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashihara H, Deng W-W, Mullen W, Crozier A (2010) Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559–566

    Article  CAS  PubMed  Google Scholar 

  • Ballester A-R, Molthoff J, de Vos R, BtL Hekkert, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ (2011) Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis 17:533–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan E, Lim Y, Wong L, Lianto F, Wong S, Lim K, Joe C, Lim T (2008) Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem 109:477–483

    Article  CAS  Google Scholar 

  • Chen L, Zhou Z-X, Yang Y-J (2007) Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239–248

    Article  CAS  Google Scholar 

  • Eungwanichayapant P, Popluechai S (2009) Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiol Bioch 47:94–97

    Article  CAS  Google Scholar 

  • Fan K, Fan D, Ding Z, Su Y, Wang X (2015) Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiol Biochem 97:350–360

    Article  CAS  PubMed  Google Scholar 

  • Fang W-P, Meinhardt LW, Tan H-W, Zhou L, Mischke S, Zhang D (2014) Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hortic Res 1:14035

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang Z-Z, Zhou D-R, Ye X-F, Jiang C-C, Pan S-L (2016) Identification of candidate anthocyanin-related genes by transcriptomic analysis of ‘Furongli’ plum (Prunus salicina Lindl.) during fruit ripening using RNA-seq. Front Plant Sci 7:1338

    PubMed  PubMed Central  Google Scholar 

  • Friedman M, Mackey BE, Kim H-J, Lee I-S, Lee K-R, Lee S-U, Kozukue E, Kozukue N (2007) Structure-activity relationships of tea compounds against human cancer cells. J Agric Food Chem 55:243–253

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143

    Article  CAS  PubMed  Google Scholar 

  • Ho C-T, Lin J-K, Shahidi F (2008) Tea and tea products: chemistry and health-promoting properties. CRC Press, Boca Raton, Florida, 305p

    Book  Google Scholar 

  • Hong GJ, Wang J, Zhang Y, Hochstetter D, Zhang SP, Pan Y, Shi YL, Xu P, Wang YF (2014) Biosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.). Plant Physiol Biochem 78:49–52

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Liu Y, Li W, Zhao L, Meng F, Wang Y, Tan H, Yang H, Wei C, Wan X (2013) Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li CF, Zhu Y, Yu Y et al (2015) Global transcriptome and gene regulation network for secondary metabolite biosynthesis of tea plant (Camellia sinensis) [J]. BMC Genomics 16(1):560

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Chen B, Zhang G, Chen L, Dong Q, Wen J, Mysore KS, Zhao J (2016) Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8. New Phytol 210:905–921

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Ma W, Lu J, Wu Y (2001) Comparison of chemical compositions of Ilex latifolia Thumb and Camellia sinensis L. Food Chem 75:339–343

    Article  CAS  Google Scholar 

  • Lin J, Wilson IW, Ge G, Sun G, Xie F, Yang Y, Wu L, Zhang B, Wu J, Zhang Y, Qiu D (2017) Whole transcriptome analysis of three leaf stages in two cultivars and one of their F1 hybrid of Camellia sinensis L. with differing EGCG content. Tree Genet Genomes 13:13

    Article  Google Scholar 

  • Liu Y, Gao L, Xia T, Zhao L (2009) Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via vanillin-HCl staining. J Agr Food Chem 57:10371–10376

    Article  CAS  Google Scholar 

  • Liu Y, Gao L, Liu L, Yang Q, Lu Z, Nie Z, Wang Y, Xia T (2012) Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J Biol Chem 287:44406–44417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu M, Tian H-l WuJ-H, Cao R-R, Wang R-X, Qi X-H, Xu Q, Chen X-H (2015) Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.). Hortic Res 2:15023

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lin-Wang K, Espley RV, Wang L, Yang H, Yu B, Dare A, Varkonyi-Gasic E, Wang J, Zhang J, Wang D, Allan AC (2016) Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix–loop–helix cofactors. J Exp Bot 67:2159–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Liu Y, Zhao L, Jiang X, Li M, Wang Y, Xu Y, Gao L, Xia T (2014) Effect of low-intensity white light mediated de-etiolation on the biosynthesis of polyphenols in tea seedlings. Plant Physiol Biochem 80:328–336

    Article  CAS  PubMed  Google Scholar 

  • Malenčić D, Popović M, Miladinović J (2007) Phenolic content and antioxidant properties of soybean (Glycine max (L.) Merr.) seeds. Molecules 12:576–581

    Article  PubMed  Google Scholar 

  • Mamati GE, Liang Y, Lu J (2006) Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J Sci Food Agric 86:459–464

    Article  CAS  Google Scholar 

  • Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol 143:1252–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura Y, Chiba T, Miura S, Tomita I, Umegaki K, Ikeda M, Tomita T (2000) Green tea polyphenols (flavan 3-ols) prevent oxidative modification of low density lipoproteins: an ex vivo study in humans. J Nutr Biochem 11:216–222

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Sakai S (1984) Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species of Camellia. Jpn J Breed 34:459–467

    Article  CAS  Google Scholar 

  • Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L (2001) The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13:2099–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park J-S, Kim J-B, Hahn B-S, Kim K-H, Ha S-H, Kim J-B, Kim Y-H (2004) EST analysis of genes involved in secondary metabolism in Camellia sinensis (tea), using suppression subtractive hybridization. Plant Sci 166:953–961

    Article  CAS  Google Scholar 

  • Premkumar R, Ponmurugan P, Manian S (2008) Growth and photosynthetic and biochemical responses of tea cultivars to blister blight infection. Photosynthetica 46:135–138

    Article  CAS  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Singh K, Sood P, Kumar S, Ahuja PS (2009) p-Coumarate: CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomics 9:271–275

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Singh K, Ahuja PS, Kumar S (2012) Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205–210

    Article  CAS  PubMed  Google Scholar 

  • Sagasser M, Lu GH, Hahlbrock K, Weisshaar B (2002) A-thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev 16:138–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C-Y, Yang H, Wei C-L, Yu O, Zhang Z-Z, Jiang C-J, Sun J, Li Y-Y, Chen Q, Xia T (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

    Article  CAS  PubMed  Google Scholar 

  • Singh HP, Ravindranath S, Singh C (1999) Analysis of tea shoot catechins: spectrophotometric quantitation and selective visualization on two-dimensional paper chromatograms using diazotized sulfanilamide. J Agric Food Chem 47:1041–1045

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2008a) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomics 9:125

    Article  PubMed  Google Scholar 

  • Singh K, Rani A, Kumar S, Sood P, Mahajan M, Yadav SK, Singh B, Ahuja PS (2008b) An early gene of the flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis). Tree Physiol 28:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Singh K, Kumar S, Yadav SK, Ahuja PS (2009) Characterization of dihydroflavonol 4-reductase cDNA in tea [Camellia sinensis (L.) O. Kuntze]. Plant Biotechnol Rep 3:95–101

    Article  Google Scholar 

  • Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Yamazaki N, Sada Y, Oguni I, Moriyasu Y (2003) Tissue distribution and intracellular localization of catechins in tea leaves. Biosci Biotechnol Biochem 67:2683–2686

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi A, Matsumoto S, Hayatsu M (1995) Effects of shading treatment on the expression of the genes for chalcone synthase and phenylalanine ammonia-lyase in tea plant (Camellia sinensis). Bull Natl Res Inst Veg Ornam Plants Tea Ser B (Jpn) 8:1–9

    CAS  Google Scholar 

  • Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K, Miyata S, Hata Y, Tomita K, Matsuda K (2014) (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med 14:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Li D, Zhang Z (2009) Antioxidant properties and mechanisms of tea polyphenols. CRC Press, Boca Raton

    Google Scholar 

  • Wang Y-C, Bachrach U (2002) The specific anti-cancer activity of green tea (−)-epigallocatechin-3-gallate (EGCG). Amino Acids 22:131–143

    Article  PubMed  Google Scholar 

  • Wang Y, Gao L, Shan Y, Liu Y, Tian Y, Xia T (2012a) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 141:7–16

    Article  CAS  Google Scholar 

  • Wang Y, Gao L, Wang Z, Liu Y, Sun M, Yang D, Wei C, Shan Y, Xia T (2012b) Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Sci Hortic 133:72–83

    Article  CAS  Google Scholar 

  • Wang X-C, Zhao Q-Y, Ma C-L, Zhang Z-H, Cao H-L, Kong Y-M, Yue C, Hao X-Y, Chen L, Ma J-Q (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LY, Wei K, Cheng H, He W, Li XH, Gong WY (2014) Geographical tracing of Xihu Longjing tea using high performance liquid chromatography. Food Chem 146:98–103

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult 125:387–398

    Article  CAS  Google Scholar 

  • Wang N, Xu H, Jiang S, Zhang Z, Lu N, Qiu H, Qu C, Wang Y, Wu S, Chen X (2017) MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). Plant J 90:276–292

    Article  CAS  PubMed  Google Scholar 

  • Wei K, Wang L, Zhou J, He W, Zeng J, Jiang Y, Cheng H (2011) Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem 125:44–48

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Chen D, Li J, Yu B, Qiao X, Huang H, He Y (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol Biol Rep 31:524–538

    Article  CAS  Google Scholar 

  • Wu Z-J, Li X-H, Liu Z-W, Xu Z-S, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Li J, Li Y, Yuan L, Liu S, Ja Huang, Liu Z (2013) Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiol Biochem 71:132–143

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M (2011) Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breed 28:381–389

    Article  CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L-Q, Wei K, Cheng H, Wang L-Y, Zhang C-C (2016) Accumulation of catechins and expression of catechin synthetic genes in Camellia sinensis at different developmental stages. Bot Stud 57:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Jin J, Chen H, Du Y, Ye J, Lu J, Lin C, Dong J, Sun Q, Wu L (2008) Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L) O. Kuntze. Afr J Biotechnol 7:3283–3287

    CAS  Google Scholar 

  • Zhou L, Xu H, Mischke S, Meinhardt LW, Zhang D, Zhu X, Li X, Fang W (2014) Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress. Hortic Res 1:14029

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31600556), and the Fundamental Research Funds for the Central Universities (2662015BQ035, 2662016PY038). We thank Prof. Robert M. Larkin for editing the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2017_2760_MOESM1_ESM.tif

Supplementary material 1 (TIFF 38657 kb) Suppl. Fig. S1 Five different development leaf stages of C. sinensis collected in this study. FL: one and a bud; SL: second leaf; TL: third leaf; ML: mature leaf; OL: old leaf

425_2017_2760_MOESM2_ESM.tif

Supplementary material 2 (TIFF 4557 kb) Suppl. Fig. S2 Distribution of transcripts and unigenes. The horizontal axis is the length of the transcripts and unigenes. The vertical axis is the number of transcripts and unigenes

425_2017_2760_MOESM3_ESM.tif

Supplementary material 3 (TIFF 1071 kb) Suppl. Fig. S3 Species distribution of the top BLASTx hits from the NR database for each Unigene

425_2017_2760_MOESM4_ESM.tif

Supplementary material 4 (TIFF 1287 kb) Suppl. Fig. S4 Histogram of Gene Ontology classification. The x-axis indicates three main categories of biological processes, cellular components and molecular functions. The y-axis indicates the number of genes in a particular category

425_2017_2760_MOESM5_ESM.tif

Supplementary material 5 (TIFF 1308 kb) Suppl. Fig. S5 Histogram of unigene KOG classification. The x-axis indicates 26 groups of KOG. The y-axis indicates the percentage of annotated unigenes in each group from all of the annotated unigenes

425_2017_2760_MOESM6_ESM.tif

Supplementary material 6 (TIFF 1036 kb) Suppl. Fig. S6 Unigene pathway assignments based on the KEGG database. a Classification based on Cellular Processes, b Classification based on Environmental Information Processing, c Classification based on Genetic Information Processing, d Classification based on Metabolism, e Classification based on Organismal Systems

Supplementary material 7 (XLSX 9 kb)

Supplementary material 8 (XLSX 9 kb)

Supplementary material 9 (XLSX 5853 kb)

Supplementary material 10 (XLSX 17 kb)

Supplementary material 11 (XLSX 16 kb)

Supplementary material 12 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Guo, Y., Wang, P. et al. Transcriptional profiling of catechins biosynthesis genes during tea plant leaf development. Planta 246, 1139–1152 (2017). https://doi.org/10.1007/s00425-017-2760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2760-2

Keywords

Navigation