Skip to main content
Log in

Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

An Erratum to this article was published on 02 November 2014

Abstract

Purpose

The aim of this prospective study was to compare early clinical outcome, radiological limb alignment, and three-dimensional (3D)-component positioning between conventional and computed tomography (CT)-based patient-specific instrumentation (PSI) in primary mobile-bearing total knee arthroplasty (TKA).

Methods

Two hundred ninety consecutive patients (300 knees) with severe, debilitating osteoarthritis scheduled for TKA were included in this study using either conventional instrumentation (CVI, n = 150) or PSI (n = 150). Patients were clinically assessed before and 2 years after surgery according to the Knee-Society-Score (KSS) and the visual-analog-scale for pain (VAS). Additionally, the Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) and the Oxford-Knee-Score (OKS) were collected at follow-up. To evaluate accuracy of CVI and PSI, hip-knee-ankle angle (HKA) and 3D-component positioning were assessed on postoperative radiographs and CT.

Results

Data of 222 knees (CVI: n = 108, PSI: n = 114) were available for analysis after a mean follow-up of 28.6 ± 5.2 months. At the early follow-up, clinical outcome (KSS, VAS, WOMAC, OKS) was comparable between the two groups. Mean HKA-deviation from the targeted neutral mechanical axis (CVI: 2.2° ± 1.7°; PSI: 1.5° ± 1.4°; p < 0.001), rates of outliers (CVI: 22.2 %; PSI: 9.6 %; p = 0.016), and 3D-component positioning outliers were significantly lower in the PSI group. Non-outliers (HKA: 180° ± 3°) showed better clinical results than outliers at the 2-year follow-up.

Conclusions

CT-based PSI compared with CVI improves accuracy of mechanical alignment restoration and 3D-component positioning in primary TKA. While clinical outcome was comparable between the two instrumentation groups at early follow-up, significantly inferior outcome was detected in the subgroup of HKA-outliers.

Level of evidence

Prospective comparative study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel MP, Parratte S, Blanc G, Ollivier M, Pomero V, Viehweger E, Argenson JN (2014) No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res 472(8):2468–2476

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bali K, Walker P, Bruce W (2012) Custom-fit total knee arthroplasty: our initial experience in 32 knees. J Arthroplasty 27(6):1149–1154

    Article  PubMed  Google Scholar 

  3. Bargren JH, Blaha JD, Freeman MA (1983) Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop Relat Res 173:178–183

    PubMed  Google Scholar 

  4. Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM (2012) Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br 94(11 Suppl A):95–99

  5. Barrett W, Hoeffel D, Dalury D, Mason JB, Murphy J, Himden S (2014) In-vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty 29(2):343–347

    Article  PubMed  Google Scholar 

  6. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    PubMed  CAS  Google Scholar 

  7. Bonner TJ, Eardley WG, Patterson P, Gregg PJ (2011) The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years. J Bone Joint Surg Br 93(9):1217–1222

    Article  PubMed  CAS  Google Scholar 

  8. Boonen B, Schotanus MG, Kerens B, van der Weegen W, van Drumpt RA, Kort NP (2013) Intra-operative results and radiological outcome of conventional and patient-specific surgery in total knee arthroplasty: a multicentre, randomised controlled trial. Knee Surg Sports Traumatol Arthrosc 21(10):2206–2212

    Article  PubMed  CAS  Google Scholar 

  9. Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J 95-B(3):354–359

  10. Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM (2004) Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Surg Br 86(6):818–823

    Article  PubMed  CAS  Google Scholar 

  11. Chen JY, Yeo SJ, Yew AK, Tay DK, Chia SL, Lo NN, Chin PL (2014) The radiological outcomes of patient-specific instrumentation versus conventional total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):630–635

    Article  PubMed  Google Scholar 

  12. Choong PF, Dowsey MM, Stoney JD (2009) Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty 24(4):560–569

    Article  PubMed  Google Scholar 

  13. Chotanaphuti T, Wangwittayakul V, Khuangsirikul S, Foojareonyos T (2014) The accuracy of component alignment in custom cutting blocks compared with conventional total knee arthroplasty instrumentation: prospective control trial. Knee 21(1):185–188

    Article  PubMed  Google Scholar 

  14. Daniilidis K, Tibesku CO (2014) A comparison of conventional and patient-specific instruments in total knee arthroplasty. Int Orthop 38(3):503–508

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dawson J, Fitzpatrick R, Murray D, Carr A (1998) Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br 80(1):63–69

    Article  PubMed  CAS  Google Scholar 

  16. Ensini A, Timoncini A, Cenni F, Belvedere C, Fusai F, Leardini A, Giannini S (2014) Intra- and post-operative accuracy assessments of two different patient-specific instrumentation systems for total knee replacement. Knee Surg Sports Traumatol Arthrosc 22(3):621–629

    Article  PubMed  Google Scholar 

  17. Fang DM, Ritter MA, Davis KE (2009) Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty 24(6 Suppl):39–43

    Article  PubMed  Google Scholar 

  18. Fu H, Wang J, Zhou S, Cheng T, Zhang W, Wang Q, Zhang X (2014) No difference in mechanical alignment and femoral component placement between patient-specific instrumentation and conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3115-1

    PubMed Central  Google Scholar 

  19. Fu Y, Wang M, Liu Y, Fu Q (2012) Alignment outcomes in navigated total knee arthroplasty: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(6):1075–1082

    Article  PubMed  Google Scholar 

  20. Hamilton WG, Parks NL (2014) Patient-specific instrumentation does not shorten surgical time: a prospective, randomized trial. J Arthroplasty 29(7):1508–1509

    Article  PubMed  Google Scholar 

  21. Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27(6):1177–1182

    Article  PubMed  Google Scholar 

  22. Heyse TJ, Tibesku CO (2014) Improved femoral component rotation in TKA using patient-specific instrumentation. Knee 21(1):268–271

    Article  PubMed  Google Scholar 

  23. Hirschmann MT, Testa E, Amsler F, Friederich NF (2013) The unhappy total knee arthroplasty (TKA) patient: higher WOMAC and lower KSS in depressed patients prior and after TKA. Knee Surg Sports Traumatol Arthrosc 21(10):2405–2411

    Article  PubMed  Google Scholar 

  24. Insall JN, Binazzi R, Soudry M, Mestriner LA (1985) Total knee arthroplasty. Clin Orthop Relat Res 192:13–22

    PubMed  Google Scholar 

  25. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    PubMed  Google Scholar 

  26. Ivie CB, Probst PJ, Bal AK, Stannard JT, Crist BD, Sonny Bal B (2014) Improved radiographic outcomes with patient-specific total knee arthroplasty. J Arthroplasty. doi:10.1016/j.arth.2014.06.024

    PubMed  Google Scholar 

  27. Kamat YD, Aurakzai KM, Adhikari AR, Matthews D, Kalairajah Y, Field RE (2009) Does computer navigation in total knee arthroplasty improve patient outcome at midterm follow-up? Int Orthop 33(6):1567–1570

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Koch PP, Muller D, Pisan M, Fucentese SF (2013) Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique. Knee Surg Sports Traumatol Arthrosc 21(10):2200–2205

    Article  PubMed  CAS  Google Scholar 

  30. Kotela A, Kotela I (2014) Patient-specific computed tomography based instrumentation in total knee arthroplasty: a prospective randomized controlled study. Int Orthop. doi:10.1007/s00264-014-2399-6

    PubMed  Google Scholar 

  31. Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB (2001) Validity and responsiveness of the Knee Society Clinical Rating System in comparison with the SF-36 and WOMAC. J Bone Joint Surg Am 83-A(12):1856–1864

  32. Lombardi AV Jr, Berend KR, Ng VY (2011) Neutral mechanical alignment: a requirement for successful TKA: affirms. Orthopedics 34(9):e504–e506

    PubMed  Google Scholar 

  33. Longstaff LM, Sloan K, Stamp N, Scaddan M, Beaver R (2009) Good alignment after total knee arthroplasty leads to faster rehabilitation and better function. J Arthroplasty 24(4):570–578

    Article  PubMed  Google Scholar 

  34. Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59(1):77–79

    PubMed  CAS  Google Scholar 

  35. Lustig S, Scholes CJ, Oussedik SI, Kinzel V, Coolican MR, Parker DA (2013) Unsatisfactory accuracy as determined by computer navigation of VISIONAIRE patient-specific instrumentation for total knee arthroplasty. J Arthroplasty 28(3):469–473

    Article  PubMed  Google Scholar 

  36. Magnussen RA, Weppe F, Demey G, Servien E, Lustig S (2011) Residual varus alignment does not compromise results of TKAs in patients with preoperative varus. Clin Orthop Relat Res 469(12):3443–3450

    Article  PubMed  PubMed Central  Google Scholar 

  37. Marimuthu K, Chen DB, Harris IA, Wheatley E, Bryant CJ, MacDessi SJ (2014) A multi-planar CT-based comparative analysis of patient-specific cutting guides with conventional instrumentation in total knee arthroplasty. J Arthroplasty 29(6):1138–1142

    Article  PubMed  Google Scholar 

  38. Matziolis G, Adam J, Perka C (2010) Varus malalignment has no influence on clinical outcome in midterm follow-up after total knee replacement. Arch Orthop Trauma Surg 130(12):1487–1491

    Article  PubMed  Google Scholar 

  39. Naal FD, Impellizzeri FM, Sieverding M, Loibl M, von Knoch F, Mannion AF, Leunig M, Munzinger U (2009) The 12-item Oxford Knee Score: cross-cultural adaptation into German and assessment of its psychometric properties in patients with osteoarthritis of the knee. Osteoarthr Cartil 17(1):49–52

    Article  PubMed  CAS  Google Scholar 

  40. Nam D, Maher PA, Rebolledo BJ, Nawabi DH, McLawhorn AS, Pearle AD (2013) Patient specific cutting guides versus an imageless, computer-assisted surgery system in total knee arthroplasty. Knee 20(4):263–267

    Article  PubMed  Google Scholar 

  41. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr (2012) Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res 470(1):99–107

    Article  PubMed  PubMed Central  Google Scholar 

  42. Noble JW Jr, Moore CA, Liu N (2012) The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty 27(1):153–155

    Article  PubMed  Google Scholar 

  43. Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL (2012) Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 470(3):889–894

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL (2012) Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res 470(3):895–902

    Article  PubMed  PubMed Central  Google Scholar 

  45. Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21(10):2213–2219

    Article  PubMed  Google Scholar 

  46. Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am 92(12):2143–2149

    Article  PubMed  Google Scholar 

  47. Pfitzner T, Abdel MP, von Roth P, Perka C, Hommel H (2014) Small improvements in mechanical axis alignment achieved with MRI versus CT-based Patient-specific Instruments in TKA: a randomized clinical trial. Clin Orthop Relat Res. doi:10.1007/s11999-014-3784-6

    PubMed  PubMed Central  Google Scholar 

  48. Pietsch M, Djahani O, Zweiger C, Plattner F, Radl R, Tschauner C, Hofmann S (2013) Custom-fit minimally invasive total knee arthroplasty: effect on blood loss and early clinical outcomes. Knee Surg Sports Traumatol Arthrosc 21(10):2234–2240

    Article  PubMed  CAS  Google Scholar 

  49. Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am 93(17):1588–1596

    Article  PubMed  Google Scholar 

  50. Roh YW, Kim TW, Lee S, Seong SC, Lee MC (2013) Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res 471(12):3988–3995

    Article  PubMed  PubMed Central  Google Scholar 

  51. Russell R, Brown T, Huo M, Jones R (2014) Patient-specific instrumentation does not improve alignment in total knee arthroplasty. J Knee Surg. doi:10.1055/s-0034-1368143

    Google Scholar 

  52. Stronach BM, Pelt CE, Erickson JA, Peters CL (2014) Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J Arthroplasty. doi:10.1016/j.arth.2014.04.025

    PubMed  Google Scholar 

  53. Stucki G, Meier D, Stucki S, Michel BA, Tyndall AG, Dick W, Theiler R (1996) Evaluation of a German version of WOMAC (Western Ontario and McMaster Universities) Arthrosis Index. Z Rheumatol 55(1):40–49

    PubMed  CAS  Google Scholar 

  54. Stucki G, Sangha O, Stucki S, Michel BA, Tyndall A, Dick W, Theiler R (1998) Comparison of the WOMAC (Western Ontario and McMaster Universities) osteoarthritis index and a self-report format of the self-administered Lequesne-Algofunctional index in patients with knee and hip osteoarthritis. Osteoarthr Cartil 6(2):79–86

    Article  PubMed  CAS  Google Scholar 

  55. Thienpont E, Bellemans J, Delport H, Van Overschelde P, Stuyts B, Brabants K, Victor J (2013) Patient-specific instruments: industry’s innovation with a surgeon’s interest. Knee Surg Sports Traumatol Arthrosc 21(10):2227–2233

    Article  PubMed  Google Scholar 

  56. Thienpont E, Bellemans J, Victor J, Becker R (2013) Alignment in total knee arthroplasty, still more questions than answers. Knee Surg Sports Traumatol Arthrosc 21(10):2191–2193

    Article  PubMed  Google Scholar 

  57. Thienpont E, Fennema P, Price A (2013) Can technology improve alignment during knee arthroplasty. Knee 20(Suppl 1):S21–S28

    Article  PubMed  Google Scholar 

  58. Tingart M, Luring C, Bathis H, Beckmann J, Grifka J, Perlick L (2008) Computer-assisted total knee arthroplasty versus the conventional technique: how precise is navigation in clinical routine? Knee Surg Sports Traumatol Arthrosc 16(1):44–50

    Article  PubMed  Google Scholar 

  59. Torres-Claramunt R, Leal J, Hinarejos P, Pelfort X, Puig L (2013) Correlation study between KSS, WOMAC and SF-36 scores in patients undergoing total knee arthroplasty in a Spanish speaking population. J Arthroplasty 28(6):950–953

    Article  PubMed  Google Scholar 

  60. Vanlommel L, Vanlommel J, Claes S, Bellemans J (2013) Slight undercorrection following total knee arthroplasty results in superior clinical outcomes in varus knees. Knee Surg Sports Traumatol Arthrosc 21(10):2325–2330

    Article  PubMed  Google Scholar 

  61. Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472(1):263–271

    Article  PubMed  PubMed Central  Google Scholar 

  62. Victor J, Van Doninck D, Labey L, Innocenti B, Parizel PM, Bellemans J (2009) How precise can bony landmarks be determined on a CT scan of the knee? Knee 16(5):358–365

    Article  PubMed  CAS  Google Scholar 

  63. Voleti PB, Hamula MJ, Baldwin KD, Lee GC (2014) Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J Arthroplasty. doi:10.1016/j.arth.2014.01.039

    PubMed  Google Scholar 

  64. Vundelinckx BJ, Bruckers L, De Mulder K, De Schepper J, Van Esbroeck G (2013) Functional and radiographic short-term outcome evaluation of the Visionaire system, a patient-matched instrumentation system for total knee arthroplasty. J Arthroplasty 28(6):964–970

    Article  PubMed  Google Scholar 

  65. White D, Chelule KL, Seedhom BB (2008) Accuracy of MRI vs CT imaging with particular reference to patient specific templates for total knee replacement surgery. Int J Med Robot 4(3):224–231

    Article  PubMed  CAS  Google Scholar 

  66. Woolson ST, Harris AH, Wagner DW, Giori NJ (2014) Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am 96(5):366–372

    Article  PubMed  Google Scholar 

  67. Yaffe MA, Patel A, Mc Coy BW, Luo M, Cayo M, Ghate R, Stulberg SD (2012) Component sizing in total knee arthroplasty: patient-specific guides vs. computer-assisted navigation. Biomed Tech (Berl) 57(4):277–282

Download references

Acknowledgments

The authors want to thank XX, XX, and XX for their assistance and participation in this study.

Conflict of interest

The TKA system GMK® Primary was designed by Medacta International S.A., Castel San Pietro, Switzerland, in cooperation with the senior author, who will receive royalties for his contribution regarding the design of the implant. XX is a consultant for Medacta. However, Medacta had no influence on study design, data collection, interpretation of the results, or the writing of the final article. There was no external funding source for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Anderl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderl, W., Pauzenberger, L., Kölblinger, R. et al. Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc 24, 102–111 (2016). https://doi.org/10.1007/s00167-014-3345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3345-2

Keywords

Navigation