Skip to main content
Log in

No Benefit of Patient-specific Instrumentation in TKA on Functional and Gait Outcomes: A Randomized Clinical Trial

  • Clinical Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Although some clinical reports suggest patient-specific instrumentation in TKA may improve alignment, reduce surgical time, and lower hospital costs, it is unknown whether it improves pain- and function-related outcomes and gait.

Questions/purposes

We hypothesized that TKA performed with patient-specific instrumentation would improve patient-reported outcomes measured by validated scoring tools and level gait as ascertained with three-dimensional (3-D) analysis compared with conventional instrumentation 3 months after surgery.

Methods

We randomized 40 patients into two groups using either patient-specific instrumentation or conventional instrumentation. Patients were evaluated preoperatively and 3 months after surgery. Assessment tools included subjective functional outcome and quality-of-life (QOL) scores using validated questionnaires (New Knee Society Score© [KSS], Knee Injury and Osteoarthritis Outcome Score [KOOS], and SF-12). In addition, gait analysis was evaluated with a 3-D system during level walking. The study was powered a priori at 90% to detect a difference in walking speed of 0.1 m/second, which was considered a clinically important difference, and in a post hoc analysis at 80% to detect a difference of 10 points in KSS.

Results

There were improvements from preoperatively to 3 months postoperatively in functional scores, QOL, and knee kinematic and kinetic gait parameters during level walking. However, there was no difference between the patient-specific instrumentation and conventional instrumentation groups in KSS, KOOS, SF-12, or 3-D gait parameters.

Conclusions

Our observations suggest that patient-specific instrumentation does not confer a substantial advantage in early functional or gait outcomes after TKA. It is possible that differences may emerge, and this study does not allow one to predict any additional variances in the intermediate followup period from 6 months to 1 year postoperatively. However, the goals of the study were to investigate the recovery period as early pain and functional outcomes are becoming increasingly important to patients and surgeons.

Level of Evidence

Level I, therapeutic study. See the Instructions to Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aglietti P, Sensi L, Cuomo P, Ciardullo A. Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res. 2008;466:2751–2755.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ahlback S. Osteoarthrosis of the knee: a radiographic investigation. Acta Radiol Diagn (Stockh). 1968:Suppl 277:7–72.

    Google Scholar 

  3. Akagi M, Matsusue Y, Mata T, Asada Y, Horiguchi M, Iida H, Nakamura T. Effect of rotational alignment on patellar tracking in total knee arthroplasty. Clin Orthop Relat Res. 1999;366:155–163.

    Article  PubMed  Google Scholar 

  4. Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C. Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res. 2005;436:172–176.

    Article  PubMed  Google Scholar 

  5. Alnahdi AH, Zeni JA, Snyder-Mackler L. Gait after unilateral total knee arthroplasty: frontal plane analysis. J Orthop Res. 2011;29:647–652.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT. The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res. 1993;287:170–177.

    PubMed  Google Scholar 

  7. Argenson JN, Parratte S, Ashour A, Komistek RD, Scuderi GR. Patient-reported outcome correlates with knee function after a single-design mobile-bearing TKA. Clin Orthop Relat Res. 2008;466:2669–2676.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Argenson JN, Parratte S, Ashour A, Saintmard B, Aubaniac JM. The outcome of rotating-platform total knee arthroplasty with cement at a minimum of ten years of follow-up. J Bone Joint Surg Am. 2012;94:638–644.

    Article  PubMed  Google Scholar 

  9. Argenson JN, Parratte S, Flecher X. [Minimally invasive total knee arthroplasty][in French]. Rev Chir Orthop Reparatrice Appar Mot. 2005;91:28–30.

    Article  PubMed  Google Scholar 

  10. Ast MP, Nam D, Haas SB. Patient-specific instrumentation for total knee arthroplasty: a review. Orthop Clin North Am. 2012;43:e17–22.

    Article  PubMed  Google Scholar 

  11. Bargren JH, Blaha JD, Freeman MA. Alignment in total knee arthroplasty: correlated biomechanical and clinical observations. Clin Orthop Relat Res. 1983;173:178–183.

    PubMed  Google Scholar 

  12. Barrett W, Hoeffel D, Dalury D, Mason JB, Murphy J, Himden S. In-vivo alignment comparing patient specific instrumentation with both conventional and computer assisted surgery (CAS) instrumentation in total knee arthroplasty. J Arthroplasty. 2014;29:343–347.

    Article  PubMed  Google Scholar 

  13. Bellemans J, Robijns F, Duerinckx J, Banks S, Vandenneucker H. The influence of tibial slope on maximal flexion after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2005;13:193–196.

    Article  CAS  PubMed  Google Scholar 

  14. Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, Faris GW, Davis KE. Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop Relat Res. 2004;428:26–34.

    Article  PubMed  Google Scholar 

  15. Berger RA, Crossett LS, Jacobs JJ, Rubash HE. Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res. 1998;356:144–153.

    Article  PubMed  Google Scholar 

  16. Bertsch C, Holz U, Konrad G, Vakili A, Oberst M. [Early clinical outcome after navigated total knee arthroplasty: comparison with conventional implantation in TKA: a controlled and prospective analysis][in German]. Orthopade. 2007;36:739–745.

    Article  CAS  PubMed  Google Scholar 

  17. Bonutti PM, Zywiel MG, McGrath MS, Mont MA. Surgical techniques for minimally invasive exposures for total knee arthroplasty. Instr Course Lect. 2010;59:83–91.

    PubMed  Google Scholar 

  18. Bonutti PM, Zywiel MG, Seyler TM, Lee SY, McGrath MS, Marker DR, Mont MA. Minimally invasive total knee arthroplasty using the contralateral knee as a control group: a case-control study. Int Orthop. 2010;34:491–495.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Bonutti PM, Zywiel MG, Ulrich SD, McGrath MS, Mont MA. Minimally invasive total knee arthroplasty: pitfalls and complications. Am J Orthop (Belle Mead NJ). 2010;39:480–484.

    PubMed  Google Scholar 

  20. Cheng T, Pan XY, Mao X, Zhang GY, Zhang XL. Little clinical advantage of computer-assisted navigation over conventional instrumentation in primary total knee arthroplasty at early follow-up. Knee. 2012;19:237–245.

    Article  CAS  PubMed  Google Scholar 

  21. Choong PF, Dowsey MM, Stoney JD. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty. 2009;24:560–569.

    Article  PubMed  Google Scholar 

  22. Fang DM, Ritter MA, Davis KE. Coronal alignment in total knee arthroplasty: just how important is it? J Arthroplasty. 2009;24(6 suppl):39–43.

    Article  PubMed  Google Scholar 

  23. Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplasty. 2011;26:309–318.

    Article  PubMed  Google Scholar 

  24. Heyse TJ, Tibesku CO. Improved femoral component rotation in TKA using patient-specific instrumentation. Knee. 2014;21:268–271.

    Article  PubMed  Google Scholar 

  25. Howell SM, Hodapp EE, Kuznik K, Hull ML. In vivo adduction and reverse axial rotation (external) of the tibial component can be minimized. Orthopedics. 2009;32:319.

    Article  PubMed  Google Scholar 

  26. Huddleston JI, Scott RD, Wimberley DW. Determination of neutral tibial rotational alignment in rotating platform TKA. Clin Orthop Relat Res. 2005;440:101–106.

    Article  PubMed  Google Scholar 

  27. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res. 1989;248:13–14.

    PubMed  Google Scholar 

  28. Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN. Gait characteristics of patients with knee osteoarthritis. J Biomech. 2001;34:907–915.

    Article  CAS  PubMed  Google Scholar 

  29. Klatt BA, Goyal N, Austin MS, Hozack WJ. Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplasty. 2008;23:26–29.

    Article  PubMed  Google Scholar 

  30. Lemaire P, Pioletti DP, Meyer FM, Meuli R, Dorfl J, Leyvraz PF. Tibial component positioning in total knee arthroplasty: bone coverage and extensor apparatus alignment. Knee Surg Sports Traumatol Arthrosc. 1997;5:251–257.

    Article  CAS  PubMed  Google Scholar 

  31. Lombardi AV Jr, Berend KR, Adams JB. Patient-specific approach in total knee arthroplasty. Orthopedics. 2008;31:927–930.

    Article  PubMed  Google Scholar 

  32. Longstaff LM, Sloan K, Stamp N, Scaddan M, Beaver R. Good alignment after total knee arthroplasty leads to faster rehabilitation and better function. J Arthroplasty. 2009;24:570–578.

    Article  PubMed  Google Scholar 

  33. Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am. 1977;59:77–79.

    CAS  PubMed  Google Scholar 

  34. Lustig S, Scholes CJ, Oussedik SI, Kinzel V, Coolican MR, Parker DA. Unsatisfactory accuracy as determined by computer navigation of VISIONAIRE patient-specific instrumentation for total knee arthroplasty. J Arthroplasty. 2013;28:469–473.

    Article  PubMed  Google Scholar 

  35. Mahoney OM, Kinsey TL. 5- to 9-year survivorship of single-radius, posterior-stabilized TKA. Clin Orthop Relat Res. 2008;466:436–442.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mandeville D, Osternig LR, Lantz BA, Mohler CG, Chou LS. The effect of total knee replacement on the knee varus angle and moment during walking and stair ascent. Clin Biomech (Bristol, Avon). 2008;23:1053–1058.

    Google Scholar 

  37. Matsuda S, Miura H, Nagamine R, Urabe K, Hirata G, Iwamoto Y. Effect of femoral and tibial component position on patellar tracking following total knee arthroplasty: 10-year follow-up of Miller-Galante I knees. Am J Knee Surg. 2001;14:152–156.

    CAS  PubMed  Google Scholar 

  38. Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE. Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res. 2001;392:38–45.

    Article  PubMed  Google Scholar 

  39. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG; Consolidated Standards of Reporting Trials Group. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol. 2010;63:e1–37.

    Google Scholar 

  40. Mont MA, Zywiel MG, McGrath MS, Bonutti PM. Scientific evidence for minimally invasive total knee arthroplasty. Instr Course Lect. 2010;59:73–82.

    PubMed  Google Scholar 

  41. Nam D, McArthur BA, Cross MB, Pearle AD, Mayman DJ, Haas SB. Patient-specific instrumentation in total knee arthroplasty: a review. J Knee Surg. 2012;25:213–219.

    Article  PubMed  Google Scholar 

  42. Ng VY, DeClaire JH, Berend KR, Gulick BC, Lombardi AV Jr. Improved accuracy of alignment with patient-specific positioning guides compared with manual instrumentation in TKA. Clin Orthop Relat Res. 2012;470:99–107.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Noble PC, Scuderi GR, Brekke AC, Sikorskii A, Benjamin JB, Lonner JH, Chadha P, Daylamani DA, Scott WN, Bourne RB. Development of a new Knee Society scoring system. Clin Orthop Relat Res. 2012;470:20–32.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Nunley RM, Ellison BS, Ruh EL, Williams BM, Foreman K, Ford AD, Barrack RL. Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res. 2012;470:889–894.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Nunley RM, Ellison BS, Zhu J, Ruh EL, Howell SM, Barrack RL. Do patient-specific guides improve coronal alignment in total knee arthroplasty? Clin Orthop Relat Res. 2012;470:895–902.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Olcott CW, Scott RD. The Ranawat Award: femoral component rotation during total knee arthroplasty. Clin Orthop Relat Res. 1999;367:39–42.

    Article  PubMed  Google Scholar 

  47. Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN. Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc. 2013;21:2213–2219.

    Article  PubMed  Google Scholar 

  48. Parratte S, Pagnano MW, Trousdale RT, Berry DJ. Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am. 2010;92:2143–2149.

    Article  PubMed  Google Scholar 

  49. Pietsch M, Djahani O, Hochegger M, Plattner F, Hofmann S. Patient-specific total knee arthroplasty: the importance of planning by the surgeon. Knee Surg Sports Traumatol Arthrosc. 2013;21:2220–2226.

    Article  CAS  PubMed  Google Scholar 

  50. Purser JL, Weinberger M, Cohen HJ, Pieper CF, Morey MC, Li T, Williams GR, Lapuerta P. Walking speed predicts health status and hospital costs for frail elderly male veterans. J Rehabil Res Dev. 2005;42:535–546.

    Article  PubMed  Google Scholar 

  51. Redelmeier DA, Bayoumi AM, Goldstein RS, Guyatt GH. Interpreting small differences in functional status: the Six Minute Walk test in chronic lung disease patients. Am J Respir Crit Care Med. 1997;155:1278–1282.

    Article  CAS  PubMed  Google Scholar 

  52. Rhoads DD, Noble PC, Reuben JD, Mahoney OM, Tullos HS. The effect of femoral component position on patellar tracking after total knee arthroplasty. Clin Orthop Relat Res. 1990;260:43–51.

    PubMed  Google Scholar 

  53. Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement: its effect on survival. Clin Orthop Relat Res. 1994;299:153–156.

    PubMed  Google Scholar 

  54. Roos EM, Toksvig-Larsen S. Knee injury and Osteoarthritis Outcome Score (KOOS): validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003;1:17.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper: why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  56. Silva A, Sampaio R, Pinto E. Patient-specific instrumentation improves tibial component rotation in TKA. Knee Surg Sports Traumatol Arthrosc. 2014;22:636–642.

    Article  PubMed  Google Scholar 

  57. Smith AJ, Lloyd DG, Wood DJ. A kinematic and kinetic analysis of walking after total knee arthroplasty with and without patellar resurfacing. Clin Biomech (Bristol, Avon). 2006;21:379–386.

    Google Scholar 

  58. Spencer BA, Mont MA, McGrath MS, Boyd B, Mitrick MF. Initial experience with custom-fit total knee replacement: intra-operative events and long-leg coronal alignment. Int Orthop. 2009;33:1571–1575.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Stronach BM, Pelt CE, Erickson J, Peters CL. Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res. 2013;471:169–174.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S. Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee. 2013;20:407–411.

    Article  PubMed  Google Scholar 

  61. Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J. Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res. 2014;472:263–271.

    Article  PubMed  Google Scholar 

  62. Ware J Jr, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34:220–233.

    Article  PubMed  Google Scholar 

  63. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop Relat Res. 1994;299:31–43.

    PubMed  Google Scholar 

  64. Wegrzyn J, Parratte S, Coleman-Wood K, Kaufman KR, Pagnano MW. The John Insall award: no benefit of minimally invasive TKA on gait and strength outcomes: a randomized controlled trial. Clin Orthop Relat Res. 2013;471:46–55.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Yoshii I, Whiteside LA, White SE, Milliano MT. Influence of prosthetic joint line position on knee kinematics and patellar position. J Arthroplasty. 1991;6:169–177.

    Article  CAS  PubMed  Google Scholar 

  66. Yu B, Kienbacher T, Growney ES, Johnson ME, An KN. Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing. J Orthop Res. 1997;15:348–352.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Damien Girard MD (Department of Orthopedic Surgery, Institute for Locomotion, Aix-Marseille University, Marseille), Guillaume Gauthier MS (Center of Motion and Gait Analysis, Department of Pediatric Orthopedic Surgery, Tim one Hospital, Marseille), and Elisabeth Castanet MS (Center of Motion and Gait Analysis, Department of Pediatric Orthopedic Surgery, Tim one Hospital, Marseille), for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Parratte MD, PhD.

Additional information

The institution of one or more of the authors (MPA) has received funding from Biomet (Warsaw, IN, USA), DePuy (Warsaw, IN, USA), Stryker (Mahwah, NJ, USA), and Zimmer (Warsaw, IN, USA). One author certifies that he (J-NAA), or a member of his immediate family has received between USD 100,000 and USD 1,000,000 from Zimmer Inc (royalties and consultant). One author certifies that he (SP), or a member of his immediate family, has received between USD 100,000 and USD 1,000,000 from Zimmer Inc (development of educational programs).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Each author certifies that his or her institution approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

Clinical Orthopaedics and Related Research neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA- approval status, of any drug or device prior to clinical use.

This work was performed at Aix-Marseille University, Marseille, France.

About this article

Cite this article

Abdel, M.P., Parratte, S., Blanc, G. et al. No Benefit of Patient-specific Instrumentation in TKA on Functional and Gait Outcomes: A Randomized Clinical Trial. Clin Orthop Relat Res 472, 2468–2476 (2014). https://doi.org/10.1007/s11999-014-3544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3544-7

Keywords

Navigation