Skip to main content
Log in

Stress-constrained topology optimization with precise and explicit geometric boundaries

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The solution of stress-constrained topology optimization problems is strongly affected by the accuracy of the computed stresses on the boundary of the evolving structure. In this paper, we address stress-constrained topology optimization using an explicit and precise representation of the boundaries. The geometrical model is a spline-based topology that evolves following the level set method. Untrimming techniques are used to construct the topology from the implicit boundaries defined by the level set function. Subsequently, a mechanical model that replicates the geometrical model precisely is constructed by mesh refinement. The governing state equations are solved using Iso Geometric Analysis (IGA). This leads to accurate stress computations and smooth stress fields, which are critical for constraining the stresses in regions that exhibit high concentrations. Consistent analytical sensitivity analysis is formulated for the entire procedure. Utilizing the smooth IGA solution, the stress is limited in the domain as well as in precise computation points on the boundaries. The applicability of the proposed approach, as well as its relative advantages compared to density-based approaches is demonstrated on several benchmark cases of stress-constrained topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Boundary Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Dapogny C, Frey P (2011) Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh. CR Math 349(17–18):999–1003

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidisc Optim 41(3):407–420

    Article  MathSciNet  MATH  Google Scholar 

  • Andreasen CS, Elingaard MO, Aage N (2020) Level set topology and shape optimization by density methods using cut elements with length scale control. Struct Multidisc Optim 1–23

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714

    Article  MathSciNet  MATH  Google Scholar 

  • Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) CutFEM: discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501

    Article  MathSciNet  MATH  Google Scholar 

  • Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topology optimization using an explicit interface representation. Struct Multidisc Optim 49(3):387–399

    Article  MathSciNet  Google Scholar 

  • Christiansen AN, Bærentzen JA, Nobel-Jørgensen M, Aage N, Sigmund O (2015) Combined shape and topology optimization of 3D structures. Comput Graph 46:25–35

    Article  Google Scholar 

  • Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Book  MATH  Google Scholar 

  • da Silva GA, Beck AT, Sigmund O (2019) Stress-constrained topology optimization considering uniform manufacturing uncertainties. Comput Methods Appl Mech Eng 344:512–537

    Article  MathSciNet  MATH  Google Scholar 

  • De Leon DM, Alexandersen J, Fonseca JS, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidisc Optim 52(5):929–943

    Article  MathSciNet  Google Scholar 

  • de Troya MAS, Tortorelli DA (2018) Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidisc Optim 58(6):2369–2386

    Article  MathSciNet  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, 4906

  • Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using X-FEM and level set methods. In: IUTAM symposium on topological design optimization of structures, machines and materials, Springer, pp 23–32

  • Emmendoerfer H Jr, Fancello EA (2014) A level set approach for topology optimization with local stress constraints. Int J Numer Methods Eng 99(2):129–156

    Article  MathSciNet  MATH  Google Scholar 

  • Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    Article  MathSciNet  MATH  Google Scholar 

  • Giraldo-Londoño O, Paulino GH (2020) A unified approach for topology optimization with local stress constraints considering various failure criteria: von Mises, Drucker-Prager, Tresca, Mohr-Coulomb, Bresler-Pister and Willam-Warnke. Proc R Soc A 476(2238):20190861

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang WS, Wang MY, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47–48):3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  • Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidisc Optim 48(1):33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  • Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid-structure interaction problems. Struct Multidisc Optim 52(1):179–195

    Article  MathSciNet  Google Scholar 

  • Kang P, Youn S-K (2016) Isogeometric topology optimization of shell structures using trimmed NURBS surfaces. Finite Elem Anal Des 120:18–40

    Article  MathSciNet  Google Scholar 

  • Kim H-J, Seo Y-D, Youn S-K (2009) Isogeometric analysis for trimmed CAD surfaces. Comput Methods Appl Mech Eng 198(37–40):2982–2995

    Article  MATH  Google Scholar 

  • Kiyono C, Vatanabe SL, Silva E, Reddy J (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19

    Article  Google Scholar 

  • Kreissl S, Maute K (2012) Level-set based fluid topology optimization using the extended finite element method. Struct Multidisc Optim 46(3):311–326

    Article  MATH  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) An explicit level set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids 65(5):496–519

    Article  MATH  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidisc Optim 41(4):605–620

    Article  Google Scholar 

  • Massarwi F, van Sosin B, Elber G (2018) Untrimming: precise conversion of trimmed-surfaces to tensor-product surfaces. Comput Graph 70:80–91

    Article  Google Scholar 

  • Massarwi F, Antolin P, Elber G (2019) Volumetric untrimming: precise decomposition of trimmed trivariates into tensor products. Comput Aided Geom Des 71:1–15

    Article  MathSciNet  MATH  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  • Nagy AP, Benson DJ (2015) On the numerical integration of trimmed isogeometric elements. Comput Methods Appl Mech Eng 284:165–185

    Article  MathSciNet  MATH  Google Scholar 

  • Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidisc Optim 55(6):2323–2338

    Article  MathSciNet  Google Scholar 

  • Oest J, Lund E (2017) Topology optimization with finite-life fatigue constraints. Struct Multidisc Optim 56(5):1045–1059

    Article  MathSciNet  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441

    Article  MATH  Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1–2):50–66

    Article  MathSciNet  MATH  Google Scholar 

  • Polajnar M, Kosel F, Drazumeric R (2017) Structural optimization using global stress-deviation objective function via the level-set method. Struct Multidisc Optim 55(1):91–104

    Article  MathSciNet  Google Scholar 

  • Schleupen A, Maute K, Ramm E (2000) Adaptive FE-procedures in shape optimization. Struct Multidisc Optim 19(4):282–302

    Article  Google Scholar 

  • Schmidt R, Wüchner R, Bletzinger K-U (2012) Isogeometric analysis of trimmed NURBS geometries. Comput Methods Appl Mech Eng 241:93–111

    Article  MathSciNet  MATH  Google Scholar 

  • Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SP, Hughes TJ, Sederberg TW (2013) Isogeometric boundary element analysis using unstructured T-splines. Comput Methods Appl Mech Eng 254:197–221

    Article  MathSciNet  MATH  Google Scholar 

  • Seo Y-D, Kim H-J, Youn S-K (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199(49–52):3270–3296

    Article  MathSciNet  MATH  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Shakour E, Amir O (2021) Topology optimization with precise evolving boundaries based on IGA and untrimming techniques. Comput Methods Appl Mech Eng 374:113564

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient stabilized XFEM. Struct Multidisc Optim 57(1):17–38

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svärd H (2015) Interior value extrapolation: a new method for stress evaluation during topology optimization. Struct Multidisc Optim 51(3):613–629

    Article  Google Scholar 

  • Toshniwal D, Speleers H, Hughes TJ (2017) Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: geometric design and isogeometric analysis considerations. Comput Methods Appl Mech Eng 327:411–458

    Article  MathSciNet  MATH  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidisc Optim 48(3):437–472

    Article  MathSciNet  Google Scholar 

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D fillets using X-FEM and level set description. Struct Multidisc Optim 33(4–5):425–438

    Article  Google Scholar 

  • Verbart A, Langelaar M, Van Keulen F (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidisc Optim 55(2):663–679

    Article  MathSciNet  Google Scholar 

  • Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

    Article  MathSciNet  MATH  Google Scholar 

  • Villanueva CH, Maute K (2017) CutFEM topology optimization of 3D laminar incompressible flow problems. Comput Methods Appl Mech Eng 320:444–473

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Benson DJ (2016a) Geometrically constrained isogeometric parameterized level-set based topology optimization via trimmed elements. Front Mech Eng 11(4):328–343

    Article  Google Scholar 

  • Wang Y, Benson DJ (2016b) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57(1):19–35

    Article  MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang W, Jiang S, Liu C, Li D, Kang P, Youn S-K, Guo X (2020) Stress-related topology optimization of shell structures using IGA/TSA-based Moving Morphable Void (MMV) approach. Comput Methods Appl Mech Eng 366:113036

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad Shakour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

To reproduce the presented results, all parameter settings and implementation aspects have been described in detail in the paper. In addition, we sincerely welcome scientists or interested parties to contact us for further explanation.

Additional information

Responsible Editor: Christian Gogu

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakour, E., Amir, O. Stress-constrained topology optimization with precise and explicit geometric boundaries. Struct Multidisc Optim 65, 42 (2022). https://doi.org/10.1007/s00158-021-03115-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-021-03115-7

Keywords

Navigation