Skip to main content
Log in

A new unified arc-length method for damage mechanics problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, in the presented examples, the proposed UAL method is 1–2 orders of magnitude faster than force-controlled arc-length and monolithic Newton–Raphson solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability

The code and datasets used in this work are available in the following GitHub repository: https://github.com/roshanphilip/UAL-codes.git.

References

  1. Lemaitre J (2012) A course on damage mechanics. Springer, Berlin

    Google Scholar 

  2. Li F, Li Z (2001) Continuum damage mechanics based modeling of fiber reinforced concrete in tension. Int J Solids Struct 38(5):777–793

    Article  Google Scholar 

  3. Mobasher ME, Berger-Vergiat L, Waisman H (2017) Non-local formulation for transport and damage in porous media. Comput Methods Appl Mech Eng 324:654–688

    Article  MathSciNet  Google Scholar 

  4. Mobasher ME, Waisman H (2021) Dual length scale non-local model to represent damage and transport in porous media. Comput Methods Appl Mech Eng 387:114154

    Article  MathSciNet  Google Scholar 

  5. Bonora N, Newaz G (1998) Low cycle fatigue life estimation for ductile metals using a nonlinear continuum damage mechanics model. Int J Solids Struct 35(16):1881–1894

    Article  Google Scholar 

  6. Voyiadjis GZ, Palazotto A, Gao X (2002) Modeling of metallic materials at high strain rates with continuum damage mechanics. Appl Mech Rev 55(5):481–493

    Article  Google Scholar 

  7. Talreja R (2006) Multi-scale modeling in damage mechanics of composite materials. J Mater Sci 41:6800–6812

    Article  Google Scholar 

  8. Williams KV, Vaziri R (2001) Application of a damage mechanics model for predicting the impact response of composite materials. Comput Struct 79(10):997–1011

    Article  Google Scholar 

  9. Zioupos P (1998) Recent developments in the study of failure of solid biomaterials and bone:‘fracture’ and ‘pre-fracture’ toughness. Mater Sci Eng C 6(1):33–40

    Article  Google Scholar 

  10. Bjørstad PE, Koster J, Krzyżanowski P (2001) Domain decomposition solvers for large scale industrial finite element problems. In: Applied parallel computing. New paradigms for HPC in industry and academia: 5th International Workshop, PARA 2000 Bergen, Norway, June 18–20, 2000 Proceedings 5, Springer, pp 373–383

  11. Iankov R (2003) Finite element simulation of profile rolling of wire. J Mater Process Technol 142(2):355–361

    Article  Google Scholar 

  12. Oden JT (2006) Finite elements of nonlinear continua. Courier Corporation, North Chelmsford

    Google Scholar 

  13. Ghrib F, Tinawi R (1995) Nonlinear behavior of concrete dams using damage mechanics. J Eng Mech 121(4):513–527

    Article  Google Scholar 

  14. Giancane S, Nobile R, Panella F, Dattoma V (2010) Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model. Proc Eng 2(1):1317–1325

  15. Cocks A (1989) Inelastic deformation of porous materials. J Mech Phys Solids 37(6):693–715

    Article  Google Scholar 

  16. Eiger A, Sikorski K, Stenger F (1984) A bisection method for systems of nonlinear equations. ACM Trans Math Softw (TOMS) 10(4):367–377

    Article  MathSciNet  Google Scholar 

  17. Demir A (2008) Trisection method by k-Lucas numbers. Appl Math Comput 198(1):339–345

    MathSciNet  Google Scholar 

  18. Brouwer LEJ (1911) Über abbildung von mannigfaltigkeiten. Math Ann 71(1):97–115

    Article  MathSciNet  Google Scholar 

  19. Azure I, Aloliga G, Doabil L (2019) Comparative study of numerical methods for solving non-linear equations using manual computation. Math Lett 5(4):41–46

    Article  Google Scholar 

  20. Zeid I (1985) Fixed-point iteration to nonlinear finite element analysis. Part II: Formulation and implementation. Int J Numer Methods Eng 21(11):2049–2069

    Article  MathSciNet  Google Scholar 

  21. Allgower EL, Georg K (2003) Introduction to numerical continuation methods. SIAM, Philadelphia

    Book  Google Scholar 

  22. Allgower EL, Georg K (2012) Numerical continuation methods: an introduction, vol 13. Springer, Berlin

    Google Scholar 

  23. Rheinboldt WC, Burkardt JV (1983) A locally parameterized continuation process. ACM Trans Math Softw (TOMS) 9(2):215–235

    Article  MathSciNet  Google Scholar 

  24. Bathe K-J, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9(2):353–386

    Article  Google Scholar 

  25. Hughes TJ, Pister KS (1978) Consistent linearization in mechanics of solids and structures. Comput Struct 8(3–4):391–397

    Article  MathSciNet  Google Scholar 

  26. Hartmann S (2005) A remark on the application of the Newton–Raphson method in non-linear finite element analysis. Comput Mech 36:100–116

    Article  MathSciNet  Google Scholar 

  27. Ehiwario J, Aghamie S (2014) Comparative study of bisection, Newton–Raphson and secant methods of root-finding problems. IOSR J Eng 4(4):01–07

    Article  Google Scholar 

  28. Jennings A (1971) Accelerating the convergence of matrix iterative processes. IMA J Appl Math 8(1):99–110

    Article  MathSciNet  Google Scholar 

  29. Nayak G, Zienkiewicz O (1972) Note on the ‘alpha’-constant stiffness method for the analysis of non-linear problems. Int J Numer Methods Eng 4(4):579–582

    Article  Google Scholar 

  30. Wolfe P (1959) The secant method for simultaneous nonlinear equations. Commun ACM 2(12):12–13

    Article  Google Scholar 

  31. Nordmann J, Naumenko K, Altenbach H (2019) A damage mechanics based cohesive zone model with damage gradient extension for creep-fatigue-interaction. Key Eng Mater 794:253–259

    Article  Google Scholar 

  32. Riks E (1972) The application of Newton’s method to the problem of elastic stability. J Appl Mech 39(4):1060–1065

    Article  Google Scholar 

  33. Riks E (1979) An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529–551

    Article  MathSciNet  Google Scholar 

  34. Wempner GA (1971) Discrete approximations related to nonlinear theories of solids. Int J Solids Struct 7(11):1581–1599

    Article  Google Scholar 

  35. Crisfield MA (1981) A fast incremental/iterative solution procedure that handles “snap-through”. In: Computational methods in nonlinear structural and solid mechanics. Elsevier, pp 55–62

  36. Bathe K-J, Dvorkin EN (1983) On the automatic solution of nonlinear finite element equations. Comput Struct 17(5–6):871–879

    Article  Google Scholar 

  37. Bellini P, Chulya A (1987) An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Comput Struct 26(1–2):99–110

    Article  Google Scholar 

  38. de Souza Neto E, Feng Y (1999) On the determination of the path direction for arc-length methods in the presence of bifurcations ands nap-backs. Comput Methods Appl Mech Eng 179(1–2):81–89

    Google Scholar 

  39. Park K (1982) A family of solution algorithms for nonlinear structural analysis based on relaxation equations. Int J Numer Methods Eng 18(9):1337–1347

    Article  Google Scholar 

  40. Simo J, Wriggers P, Schweizerhof K, Taylor R (1986) Finite deformation post-buckling analysis involving inelasticity and contact constraints. Int J Numer Methods Eng 23(5):779–800

    Article  Google Scholar 

  41. Skeie G, Felippa C (1990) A local hyperelliptic constraint for nonlinear analysis. In: Pande GN, Middleton J (eds) Proceedings 3rd international conference on numerical methods in engineering: theory and applications. Swansea, pp 13–27

  42. Forde BW, Stiemer SF (1987) Improved arc length orthogonality methods for nonlinear finite element analysis. Comput Struct 27(5):625–630

    Article  Google Scholar 

  43. De Borst R, Crisfield MA, Remmers JJ, Verhoosel CV (2012) Nonlinear finite element analysis of solids and structures. Wiley, Hoboken

    Book  Google Scholar 

  44. May S, Vignollet J, de Borst R (2016) A new arc-length control method based on the rates of the internal and the dissipated energy. Eng Comput 33(1):100–115

    Article  Google Scholar 

  45. Singh N, Verhoosel C, De Borst R, Van Brummelen E (2016) A fracture-controlled path-following technique for phase-field modeling of brittle fracture. Finite Elem Anal Des 113:14–29

    Article  MathSciNet  Google Scholar 

  46. Bharali R, Goswami S, Anitescu C, Rabczuk T (2022) A robust monolithic solver for phase-field fracture integrated with fracture energy based arc-length method and under-relaxation. Comput Methods Appl Mech Eng 394:114927

    Article  MathSciNet  Google Scholar 

  47. Memon B-A, Su X-Z (2004) Arc-length technique for nonlinear finite element analysis. J Zhejiang Univ Sci A 5:618–628

    Article  Google Scholar 

  48. Pretti G, Coombs WM, Augarde CE (2022) A displacement-controlled arc-length solution scheme. Comput Struct 258:106674

    Article  Google Scholar 

  49. Byrd RH, Nocedal J, Yuan Y-X (1987) Global convergence of a class of quasi-Newton methods on convex problems. SIAM J Numer Anal 24(5):1171–1190

    Article  MathSciNet  Google Scholar 

  50. Dai Y-H (2013) A perfect example for the BFGS method. Math Program 138:501–530

    Article  MathSciNet  Google Scholar 

  51. Levenberg K (1944) Method for the solution of certain problems in least squares SIAM. J Numer Anal 16:588-A604

    Google Scholar 

  52. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  MathSciNet  Google Scholar 

  53. Kristensen PK, Martínez-Pañeda E (2020) Phase field fracture modelling using quasi-Newton methods and a new adaptive step scheme. Theoret Appl Fract Mech 107:102446

    Article  Google Scholar 

  54. Farhat C, Roux F-X (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    Article  MathSciNet  Google Scholar 

  55. Mobasher ME, Waisman H (2016) Adaptive modeling of damage growth using a coupled FEM/BEM approach. Int J Numer Methods Eng 105(8):599–619

    Article  MathSciNet  Google Scholar 

  56. Pebrel J, Rey C, Gosselet P (2008) A nonlinear dual-domain decomposition method: Application to structural problems with damage. Int J Multiscale Comput Eng 6(3)

  57. Lloberas-Valls O, Rixen D, Simone A, Sluys L (2011) Domain decomposition techniques for the efficient modeling of brittle heterogeneous materials. Comput Methods Appl Mech Eng 200(13–16):1577–1590

    Article  MathSciNet  Google Scholar 

  58. Shaidurov VV (2013) Multigrid methods for finite elements, vol 318. Springer, Berlin

  59. Rosam J, Jimack PK, Mullis A (2008) An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification. Acta Mater 56(17):4559–4569

    Article  Google Scholar 

  60. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273–1311

    Article  MathSciNet  Google Scholar 

  61. Hofacker M, Miehe C (2012) Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Int J Fract 178:113–129

    Article  Google Scholar 

  62. Crisfield M (1983) An arc-length method including line searches and accelerations. Int J Numer Methods Eng 19(9):1269–1289

    Article  MathSciNet  Google Scholar 

  63. Hellweg H-B, Crisfield M (1998) A new arc-length method for handling sharp snap-backs. Comput Struct 66(5):704–709

    Article  Google Scholar 

  64. Crisfield M (1982) Local instabilities in the non-linear analysis of reinforced concrete beams and slabs. Proc Inst Civ Eng 73(1):135–145

    Google Scholar 

  65. Peerlings RH, de Borst R, Brekelmans WM, de Vree J (1996) Gradient enhanced damage for quasi-brittle materials. Int J Numer Methods Eng 39(19):3391–3403

    Article  Google Scholar 

  66. Murakami S (2012) Continuum damage mechanics: a continuum mechanics approach to the analysis of damage and fracture, vol 185. Springer, Berlin

    Google Scholar 

  67. Kachanov L (1986) Introduction to continuum damage mechanics, vol 10. Springer, Berlin

    Google Scholar 

  68. Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113(10):1512–1533

    Article  Google Scholar 

  69. Ahmed B, Voyiadjis GZ, Park T (2021) Local and non-local damage model with extended stress decomposition for concrete. Int J Damage Mech 30(8):1149–1191

    Article  Google Scholar 

  70. Pijaudier-Cabot G, Haidar K, Dubé J-F (2004) Non-local damage model with evolving internal length. Int J Numer Anal Methods Geomech 28(7–8):633–652

    Article  Google Scholar 

  71. Jirásek M, Marfia S (2005) Non-local damage model based on displacement averaging. Int J Numer Methods Eng 63(1):77–102

    Article  MathSciNet  Google Scholar 

  72. Chaves EW (2013) Notes on continuum mechanics. Springer, Berlin, p 2013

    Book  Google Scholar 

  73. Bathe K-J (2006) Finite element procedures. Klaus-Jurgen Bathe, Berlin

    Google Scholar 

  74. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation, North Chelmsford

    Google Scholar 

  75. Padovan J (1980) Self adaptive incremental Newton–Raphson algorithms. NASA CP-2147, pp 115–121

  76. Díez P (2003) A note on the convergence of the secant method for simple and multiple roots. Appl Math Lett 16(8):1211–1215

    Article  MathSciNet  Google Scholar 

  77. Nocedal J, Wright SJ (2006) Line search methods. Numer Optim 30–65

  78. Findeisen C, Hohe J, Kadic M, Gumbsch P (2017) Characteristics of mechanical metamaterials based on buckling elements. J Mech Phys Solids 102:151–164

    Article  MathSciNet  Google Scholar 

  79. Yang Y-B, Shieh M-S (1990) Solution method for nonlinear problems with multiple critical points. AIAA J 28(12):2110–2116

    Article  Google Scholar 

  80. Carrera E (1994) A study on arc-length-type methods and their operation failures illustrated by a simple model. Comput Struct 50(2):217–229

    Article  MathSciNet  Google Scholar 

  81. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, Hoboken

    Google Scholar 

  82. Crisfield M (1979) A faster modified Newton-Raphson iteration. Comput Methods Appl Mech Eng 20(3):267–278

    Article  MathSciNet  Google Scholar 

  83. MathWorks, mldivide (2023). https://www.mathworks.com/help/matlab/ref/mldivide.html

  84. Schweizerhof K, Wriggers P (1986) Consistent linearization for path following methods in nonlinear FE analysis. Comput Methods Appl Mech Eng 59(3):261–279

    Article  Google Scholar 

  85. Watson LT, Holzer SM (1983) Quadratic convergence of Crisfield’s method. Comput Struct 17(1):69–72

    Article  Google Scholar 

  86. Krishnamoorthy C, Ramesh G, Dinesh K (1996) Post-buckling analysis of structures by three-parameter constrained solution techniques. Finite Elem Anal Des 22(2):109–142

    Article  MathSciNet  Google Scholar 

  87. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Elsevier, Amsterdam

    Google Scholar 

  88. Taylor RL (2014) FEAP-A finite element analysis program (2014)

  89. Londono JG, Berger-Vergiat L, Waisman H (2016) A prony-series type viscoelastic solid coupled with a continuum damage law for polar ice modeling. Mech Mater 98:81–97

    Article  Google Scholar 

  90. Chen L, de Borst R (2021) Phase-field modelling of cohesive fracture. Eur J Mech A/Solids 90:104343

    Article  MathSciNet  Google Scholar 

  91. Nguyen TH, Bui TQ, Hirose S (2018) Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored to low-order finite elements. Comput Methods Appl Mech Eng 328:498–541

    Article  MathSciNet  Google Scholar 

  92. Poh LH, Sun G (2017) Localizing gradient damage model with decreasing interactions. Int J Numer Methods Eng 110(6):503–522

    Article  MathSciNet  Google Scholar 

  93. Corporation I (2022) Export compliance metrics for intel®microprocessors (2022). https://www.intel.com/content/www/us/en/support/articles/000005755/processors.html

  94. Bažant ZP (1976) Instability, ductility, and size effect in strain-softening concrete. J Eng Mech Div 102(2):331–344

    Article  Google Scholar 

  95. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    Article  MathSciNet  Google Scholar 

  96. de Borst R, Nauta P (1985) Non-orthogonal cracks in a smeared finite element model. Eng Comput 2(1):35–46

    Article  Google Scholar 

  97. Rots JG, De Borst R (1987) Analysis of mixed-mode fracture in concrete. J Eng Mech 113(11):1739–1758

    Article  Google Scholar 

  98. Wu J-Y, Huang Y, Nguyen VP (2020) On the BFGS monolithic algorithm for the unified phase field damage theory. Comput Methods Appl Mech Eng 360:112704

    Article  MathSciNet  Google Scholar 

  99. Lampron O, Therriault D, Levesque M (2021) An efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton method. Comput Methods Appl Mech Eng 386:114091

    Article  MathSciNet  Google Scholar 

  100. Khalil Z, Elghazouli AY, Martinez-Paneda E (2022) A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Comput Methods Appl Mech Eng 388:114286

    Article  MathSciNet  Google Scholar 

  101. Pantidis P, Mobasher ME (2023) Integrated finite element neural network (I-FENN) for non-local continuum damage mechanics. Comput Methods Appl Mech Eng 404:115766

    Article  MathSciNet  Google Scholar 

  102. Peng F, Huang W, Zhang Z-Q, Guo TF, Ma YE (2020) Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method. Eng Fract Mech 238:107233

    Article  Google Scholar 

  103. Treifi M, Oyadiji SO, Tsang DK (2009) Computations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element method. Eng Fract Mech 76(13):2091–2108

    Article  Google Scholar 

  104. Zhou S, Rabczuk T, Zhuang X (2018) Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw 122:31–49

    Article  Google Scholar 

  105. Mazars J (1986) A description of micro-and macroscale damage of concrete structures. Eng Fract Mech 25(5–6):729–737

    Article  Google Scholar 

  106. Mazars J (1984) Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. These de Docteur es Sciences Presentee a L’universite Pierre et Marie Curie-Paris 6 (1984)

  107. De Vree J, Brekelmans W, van Gils M (1995) Comparison of nonlocal approaches in continuum damage mechanics. Comput Struct 55(4):581–588

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Sand Hazards and Opportunities for Resilience, Energy, and Sustainability (SHORES) Center, funded by Tamkeen under the NYUAD Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa E. Mobasher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 344 KB)

Appendices

Appendix A: Coefficients used in PC derivation of non-local damage model

The following are the coefficients used in the definition of predictor and correcter values of Sect. 5.1.2. The coefficients \(\varvec{A}\) to \(\varvec{H}\) depends on the consistent tangent \(\varvec{J}\) and the residuals \(\varvec{r}\).

(A.1a)
(A.1b)
(A.1c)
(A.1d)
(A.1e)
(A.1f)
(A.1g)
(A.1h)

Note that proposed methods are implemented in MATLAB and the matrix inversion operations in the derivations are performed by using mldivide [83] to solve the system of equations.

Appendix B: Coefficients used in PNC derivation of local damage model

The following are the coefficients used in the definition of correcter values in Sect. 5.2.1.

(B.1a)
(B.1b)
(B.1c)

Appendix C: Unified arc-length Jacobian Matrix (local damage)

We begin the derivation of consistent tangent stiffness matrix (\(\varvec{J}\)) for the UAL Local damage law from the following residual equations,

(C.1a)
(C.1b)
(C.1c)

The linearized form of Eq. (C.1) expressed as \(\varvec{J}\delta \varvec{x}=-\varvec{r}\) is presented below:

(C.2)

where:

(C.3)
(C.4)
(C.5)
(C.6)
(C.7)
(C.8)
(C.9)
(C.10)
(C.11)
(C.12)

Appendix D: Unified arc-length Jacobian Matrix (non-local gradient damage)

(D.1a)
(D.1b)
(D.1c)
(D.1d)

The linearized form of Eq. (D.1) expressed as \(\varvec{J}\delta \varvec{x}=-\varvec{r}\) is presented below:

figure c
figure d
figure e

Thus, the final system of equations is:

(D.34)

Appendix E: Mazars damage model

In this work, a widely cited damage model first proposed by Mazars [105] is used. The following is the condition based on which damage is triggered in the model:

$$\begin{aligned} d(\varepsilon ^{*}_{eq}) = \left\{ \begin{array}{ll} 0 &{} \quad \text {if}\quad \varepsilon ^{*}_{eq} < \varepsilon _{D} \\ 1 - \frac{\varepsilon _{D}(1-\mathscr {A})}{\varepsilon ^{*}_{eq}} - \frac{\mathscr {A}}{\exp (\mathscr {B}(\varepsilon ^{*}_{eq} - \varepsilon _{D}))} &{} \quad \text {if}\quad \varepsilon ^{*}_{eq} \ge \varepsilon _{D} \end{array} \right. \end{aligned}$$
(E.1)

In the expression above, \(\varepsilon ^{*}_{eq}\) is the local or non-local equivalent strain, \(\varepsilon _{D}\) is the damage threshold strain at which damage initiates, while \(\mathscr {A}\) and \(\mathscr {B}\) are material properties. Two definitions of \(\varepsilon ^{*}_{eq}\) are adopted in this work. In the problems with tensile loads, \(\varepsilon ^{*}_{eq}\) is calculated following Mazars approach [106]:

$$\begin{aligned} \varepsilon ^{*}_{eq} = \sqrt{\sum _{I=1}^{3} {\langle \epsilon _I \rangle }^2} \end{aligned}$$
(E.2)

where, \(\epsilon _I\), \(I = 1,2,3\), are the principal strains, and the Macauley brackets denote the positive part \({\langle \varvec{\cdot } \rangle } = \frac{|\varvec{\cdot } |+ \varvec{\cdot } }{2}\). Equation (E.2) is used to calculate the equivalent strain in all the problems presented in Sect. 6 except SNS. In the Single Notch Shear (SNS) 2D problem, the \(\varepsilon ^{*}_{eq}\) is based on the work of [107]; \(I_{1}\) and \(J_{2}\) are the strain invariants and \(\mathbf {\varepsilon }\) is the strain tensor.

$$\begin{aligned} \varepsilon ^{*}_{eq} = \frac{k-1}{2k(1-2\nu )} + \frac{1}{2k} \sqrt{\frac{(k-1)^2}{(1-2\nu )^{2}}I_{1}^{2} + \frac{2k}{(1+\nu )^2}J_{2}} \nonumber \\ \end{aligned}$$
(E.3)

where:

$$\begin{aligned} I_{1}= & {} tr(\varvec{\varepsilon }) \end{aligned}$$
(E.4)
$$\begin{aligned} J_{2}= & {} 3tr(\varvec{\varepsilon } \cdot \varvec{\varepsilon }) - tr^{2}(\varvec{\varepsilon }) \end{aligned}$$
(E.5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saji, R.P., Pantidis, P. & Mobasher, M.E. A new unified arc-length method for damage mechanics problems. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02473-5

Keywords

Navigation