Skip to main content
Log in

Stress constrained topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper develops and evaluates a method for handling stress constraints in topology optimization. The stress constraints are used together with an objective function that minimizes mass or maximizes stiffness, and in addition, the traditional stiffness based formulation is discussed for comparison. We use a clustering technique, where stresses for several stress evaluation points are clustered into groups using a modified P-norm to decrease the number of stress constraints and thus the computational cost. We give a detailed description of the formulations and the sensitivity analysis. This is done in a general manner, so that different element types and 2D as well as 3D structures can be treated. However, we restrict the numerical examples to 2D structures with bilinear quadrilateral elements. The three formulations and different approaches to stress constraints are compared using two well known test examples in topology optimization: the L-shaped beam and the MBB-beam. In contrast to some other papers on stress constrained topology optimization, we find that our formulation gives topologies that are significantly different from traditionally optimized designs, in that it actually manage to avoid stress concentrations. It can therefore be used to generate conceptual designs for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allaire G, Jouve F (2008) Minimum stress optimal design with the level set method. Eng Anal Bound Elem 32(11):909–918

    Article  MATH  Google Scholar 

  • Amstutz S, Novotny A (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidisc Optim 41(3):407–420

    Article  MathSciNet  Google Scholar 

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods, and applications, 2nd edn. Springer, Berlin

    Google Scholar 

  • Bendsøe M, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Multidisc Optim 7(3):141–159

    Article  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidisc Optim 36(2):125–141

    Article  MathSciNet  Google Scholar 

  • Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Cheng G, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Multidisc Optim 13(4):258–266

    Article  Google Scholar 

  • Christensen P, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer, Berlin

    Google Scholar 

  • Cook R, Malkus D, Plesha M, Witt R (2002) Concepts and applications of finite element analysis. Wiley, New York

    Google Scholar 

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Méc 3(6):25–52

    Google Scholar 

  • Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(8):1453–1478

    Article  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling optimal stress constraints in optimal material distribution. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA Paper 98-4906, pp 1501–1509

  • Guo X, Cheng G, Yamazaki K (2001) A new approach for the solution of singular optima in truss topology optimization with stress and local buckling constraints. Struct Multidisc Optim 22(5):364–373

    Article  Google Scholar 

  • Guo X, Zhang W, Wang M, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47):3439–3452

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes T (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidisc Optim 2(3):133–142

    Article  Google Scholar 

  • Kočvara M, Stingl M (2012) Solving stress constrained problems in topology and material optimization. Struct Multidisc Optim 46(1):1–15

    Article  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidisc Optim 41(4):605–620

    Article  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidisc Optim 39(4):419–437

    Article  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441

    Article  MATH  Google Scholar 

  • Rozvany G, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidisc Optim 8(4):228–235

    Article  Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3):250–252

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc Optim 34(4):277–299

    Article  MathSciNet  Google Scholar 

  • Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10(10):803–805

    Article  Google Scholar 

  • Torstenfelt B (2012) The TRINITAS project. http://www.solid.iei.liu.se/Offered_services/Trinitas. Accessed 4 Sept 2012

  • Werme M (2008) Using the sequential linear integer programming method as a post-processor for stress-constrained topology optimization problems. Int J Numer Methods Eng 76(10):1544–1567

    Article  MathSciNet  MATH  Google Scholar 

  • Yang R, Chen C (1996) Stress-based topology optimization. Struct Multidisc Optim 12(2):98–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Holmberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmberg, E., Torstenfelt, B. & Klarbring, A. Stress constrained topology optimization. Struct Multidisc Optim 48, 33–47 (2013). https://doi.org/10.1007/s00158-012-0880-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0880-7

Keywords

Navigation