Skip to main content
Log in

Stress-based topology optimization for continua

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

We propose an effective algorithm to resolve the stress-constrained topology optimization problem. Our procedure combines a density filter for length scale control, the solid isotropic material with penalization (SIMP) to generate black-and-white designs, a SIMP-motivated stress definition to resolve the stress singularity phenomenon, and a global/regional stress measure combined with an adaptive normalization scheme to control the local stress level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidisc Optim 28(2–3):87–98

    MathSciNet  Google Scholar 

  • Altair Engineering (2007) Optistruct user’s guide, version 8.0. Troy, MI, USA

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202

    Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):625–654

    Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928

    Article  MATH  MathSciNet  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(8):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidisc Optim 36(2):125–141

    Article  MathSciNet  Google Scholar 

  • Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(11):1693–1714

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE (2005) A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Struct Multidisc Optim 30(5):428–436

    Article  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Cheng GD, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20(2):129–148

    Article  Google Scholar 

  • Cheng GD, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Multidisc Optim 13(4):258–266

    Google Scholar 

  • Diaz A, Sigmund O (2007) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10(1):40–45

    Google Scholar 

  • Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43(2):1453–1478

    Article  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New development in handling stress constraints in optimal material distribution. In: Proc. 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. A collection of technical papers (held in St. Louis, Missouri), vol 3, pp 1501–1509

  • Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23(3):409–428

    Article  MATH  MathSciNet  Google Scholar 

  • Fonseca JSO, Cardoso EL (2003) Complexity control in the topology optimization of continuum structures. J Braz Soc Mech Sci Eng 25(3):293–301

    Google Scholar 

  • Friedlander A, Martínez JM, Santos SA (1994) A new trust-region algorithm for bound constrained minimization. Appl Math Optim 30(3):235–266

    Article  MATH  MathSciNet  Google Scholar 

  • Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. In: Alves M, da Costa Mattos HS (eds) Solid mechanics in Brazil, vol 1. ABCM, Rio de Janeiro, pp 239–250

    Google Scholar 

  • Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidisc Optim 11(1–2):1–12

    Google Scholar 

  • Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidisc Optim 2(3):133–142

    Google Scholar 

  • Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2009) Stress-based topology optimization for continua. In: Proc. 8th world congresses of structural and multidisciplinary optimization. Lisbon, Portugal

    Google Scholar 

  • Lipton R (2002) Design of functionally graded composite structures in the presence of stress constraints. Int J Solids Struct 39(8):2575–2586

    Article  MATH  MathSciNet  Google Scholar 

  • Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(13):2471–2499

    Article  MATH  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2007) Block aggregation of stress constraints in topology optimization of structures. In: Hernández S, Brebbia CA (eds) Computer aided optimum design of structures X. Myrtle Beach (SC), USA

    Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidisc Optim 39(4):419–437

    Article  Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1–2):50–66

    Article  MathSciNet  Google Scholar 

  • Rahmatalla S, Swan CC (2004) Continuum topology optimization of buckling-sensitive structures. Struct Multidisc Optim 27(1–2):130–135

    Article  Google Scholar 

  • Rozvany GIN (2001) On design-dependent constraints and singular topologies. Struct Multidisc Optim 21(2):164–172

    Article  Google Scholar 

  • Rozvany GIN, Birker T (1994) On singular topologies in exact layout optimization. Struct Multidisc Optim 8(4):228–235

    Google Scholar 

  • Rozvany GIN, Sobieszczanski-Sobieski J (1992) New optimality criteria methods: forcing uniqueness of the adjoint strains by corner-rounding at constraint intersections. Struct Multidisc Optim 4(3–4):244–246

    Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidisc Optim 4(3–4):250–252

    Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mechan Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):68–75

    Google Scholar 

  • Stump FV, Silva ECN, Paulino GH (2007) Optimization of material distribution in functionally graded structures with stress constraints. Commun Numer Methods Eng 23(5):535–551

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc Optim 34(4):277–299

    Article  MathSciNet  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Multidisc Optim 12(2):98–105

    Google Scholar 

  • Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):209–336

    Google Scholar 

  • Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21:152–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chau Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, C., Norato, J., Bruns, T. et al. Stress-based topology optimization for continua. Struct Multidisc Optim 41, 605–620 (2010). https://doi.org/10.1007/s00158-009-0440-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0440-y

Keywords

Navigation