Skip to main content
Log in

Density and level set-XFEM schemes for topology optimization of 3-D structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

As the capabilities of additive manufacturing techniques increase, topology optimization provides a promising approach to design geometrically sophisticated structures. Traditional topology optimization methods aim at finding conceptual designs, but they often do not resolve sufficiently the geometry and the structural response such that the optimized designs can be directly used for manufacturing. To overcome these limitations, this paper studies the viability of the extended finite element method (XFEM) in combination with the level-set method (LSM) for topology optimization of three dimensional structures. The LSM describes the geometry by defining the nodal level set values via explicit functions of the optimization variables. The structural response is predicted by a generalized version of the XFEM. The LSM–XFEM approach is compared against results from a traditional Solid Isotropic Material with Penalization method for two-phase “solid–void” and “solid–solid” problems. The numerical results demonstrate that the LSM–XFEM approach describes crisply the geometry and predicts the structural response with acceptable accuracy even on coarse meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    Article  MATH  Google Scholar 

  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Google Scholar 

  4. Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202

    Article  Google Scholar 

  5. Bendsøe MP, Sigmund O (2003) Topology optimization: theory. Methods and applications. Springer, New York

    Google Scholar 

  6. Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MATH  MathSciNet  Google Scholar 

  7. Deaton J, Grandhi R (2013) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim p 1–38.doi: 10.1007/s00158-013-0956-z

  8. van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472

    Google Scholar 

  9. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Math Eng 78:229–252

    Article  MATH  MathSciNet  Google Scholar 

  10. Duysinx P, Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using x-fem and level set methods. In: IUTAM symposium on topological design optimization of structures. springer, machines and materials, p 23–32

  11. Eschenauer H, Kobelev V, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Multidiscip Optim 8(1):42–51

    Article  Google Scholar 

  12. Fries T, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84(3):253–304

    MATH  MathSciNet  Google Scholar 

  13. Fries TP (2009) The intrinsic xfem for two-fluid flows. Int J Numer Methods Fluids 60(4):437–471

    Article  MATH  MathSciNet  Google Scholar 

  14. Gain AL, Paulino GH (2013) A critical comparative assessment of differential equation-driven methods for structural topology optimization. Struct Multidiscip Optim 48(4):685–710

    Article  MathSciNet  Google Scholar 

  15. Gerstenberger A, Wall WA (2008a) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Methods Fluids 57(9):1227–1248

    Article  MATH  MathSciNet  Google Scholar 

  16. Gerstenberger A, Wall WA (2008b) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197:1699–1714

    Article  MATH  MathSciNet  Google Scholar 

  17. Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  Google Scholar 

  18. Guest J, Asadpoure A, Ha SH (2011) Eliminating beta-continuation from heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443–453

    Article  MATH  MathSciNet  Google Scholar 

  19. Hansbo A, Hansbo P (2004) A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput Methods Appl Mech Eng 193(33–35):3523–3540

    Article  MATH  MathSciNet  Google Scholar 

  20. Heroux M, Bartlett R, Hoekstra VHR, Hu J, Kolda T, Lehoucq R, Long K, Pawlowski R, Phipps E, Salinger A, Thornquist H, Tuminaro R, Willenbring J, Williams A (2003) An Overview of Trilinos. Tech. Rep. SAND2003-2927, Sandia National Laboratories

  21. Herrero D, Martínez J, Martí P (2013) An implementation of level set based topology optimization using gpu. In: 10th World Congress on Structural and Multidisciplinary Optimization

  22. Juntunen M, Stenberg R (2009) Nitsches method for general boundary conditions. Math Comput 78:1353–1374

    Article  MATH  MathSciNet  Google Scholar 

  23. Kreissl S, Maute K (2012) Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip Optim 46(3):311–326

    Google Scholar 

  24. Lang C, Makhija D, Doostan A, Maute K (2013) A simple and efficient preconditioning scheme for heaviside enriched XFEM. Computat Mech. arXiv:1312.6092

  25. Lee P, Yang R, Maute K (2011) Lecture notes in applied and computational mechanics. An extended finite element method for the analysis of submicron heat transfer phenomena, multiscale methods in computational mechanics, vol 55. Springer, Dordrecht

    Google Scholar 

  26. Li L, Wang M, Wei P (2012) Xfem schemes for level set based structural optimization. Front Mech Eng 7(4):335–356

    Article  Google Scholar 

  27. Makhija D, Maute K (2014) Numerical instabilities in level set topology optimization with the extended finite element method. Struct Multidiscip Optim 49(2):185–197

    Google Scholar 

  28. Maute K, Ramm E (1995) Adaptive topology optimization. Struct Multidiscip Optim 10(2):100–112

    Article  Google Scholar 

  29. Maute K, Ramm E (1997) Adaptive topology optimization of shell structures. AIAA J 35(11):1767–1773

    Article  MATH  Google Scholar 

  30. Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Multidiscip Optim 15(2): 81–91

    Google Scholar 

  31. Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. In: 9th World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan

  32. Meisel N, Gaynor A, Williams C, Guest J (2013) Multiple-material topology optimization of compliant mechanisms created via polyjet 3d printing. In: 24th Annual International Solid Freeform Fabrication Symposium An Additive Manufacturing Conference, August 12–14, 2013, Austin, TX

  33. van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets using x-fem and level set description. Struct Multidiscip Optim 33(4–5):425–438

    Article  Google Scholar 

  34. van Miegroet L, Moës N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: 6th World Congress of Structural and Multidisciplinary Optimization

  35. Nguyen T, Song J, Paulino G (2010) Challenges and advances in system reliability-based optimization of structural topology. In: structures congress 2010, pp 480–491

  36. Nguyen T, Paulino G, Song J, Le C (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507–530

    Article  MathSciNet  Google Scholar 

  37. Ning X, Pellegrino S (2012) Design of lightweight structural components for direct digital manufacturing. In: 53rd AIAA/ ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference

  38. Norato J, Bendsøe M, Haber R, Tortorelli D (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4):375–386

    Article  MATH  MathSciNet  Google Scholar 

  39. Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237

    Article  MATH  MathSciNet  Google Scholar 

  40. Sethian J, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MATH  MathSciNet  Google Scholar 

  41. Sigmund O (2001a) Design of multiphysics actuators using topology optimization-part I: one-material structures. Comput Methods Appl Mech Eng 190(49–50):6577–6604

    Article  MATH  Google Scholar 

  42. Sigmund O (2001b) Design of multiphysics actuators using topology optimization-part II: two-material structures. Comput Methods Appl Mech Eng 190(49–50):6605–6627

    Article  Google Scholar 

  43. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  44. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim

  45. Sokolowski J, Zochowski A (1999) Topological derivatives for elliptic problems. Inverse Probl 15:123

    Article  MATH  MathSciNet  Google Scholar 

  46. Stenberg R (1995) On some techniques for approximating boundary conditions in the finite element method. J Comput Appl Math 63(1–3):139–148

    Article  MATH  MathSciNet  Google Scholar 

  47. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    Article  MATH  MathSciNet  Google Scholar 

  48. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  Google Scholar 

  49. Wang S, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65:1892–1922

    Article  MATH  Google Scholar 

  50. Wei P, Wang M, Xing X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Design 42(8):708–719

    Article  Google Scholar 

  51. Yamasaki S, Nomura T, Kawamoto A, Sato K, Nishiwaki S (2011) A level set-based topology optimization method targeting metallic waveguide design problems. Int J Numer Methods Eng 87(9):844–868

    Article  MATH  MathSciNet  Google Scholar 

  52. Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the x-fem for computational fracture mechanics. Appl Math Model 33(12):4269–4282

    Article  MATH  MathSciNet  Google Scholar 

  53. Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation under grant EFRI-ODISSEI 1240374 and CBET 1246854. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanueva, C.H., Maute, K. Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54, 133–150 (2014). https://doi.org/10.1007/s00466-014-1027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1027-z

Keywords

Navigation