Skip to main content
Log in

Levelset based fluid topology optimization using the extended finite element method

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This study focuses on finding the optimal layout of fluidic devices subjected to incompressible flow at low Reynolds numbers. The proposed approach uses a levelset method to describe the fluid-solid interface geometry. The flow field is modeled by the incompressible Navier–Stokes equations and discretized by the extended finite element method (XFEM). The no-slip condition along the fluid-solid interface is enforced via a stabilized Lagrange multiplier method. Unlike the commonly used porosity approach, the XFEM approach does not rely on a material interpolation scheme, which allows for more flexibility in formulating the design problems. Further, it mitigates shortcomings of the porosity approach, including spurious pressure diffusion through solid material, strong dependency of the accuracy of the boundary enforcement with respect to the model parameters which may affect the optimization results, and poor boundary resolution. Numerical studies verify that the proposed method is able to recover optimization results obtained with the porosity approach. Further, it is demonstrated that the XFEM approach yields physical results for problems that cannot be solved with the porosity approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in viscous flows. Numer Math 81:497–520

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41(1):77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Brinkman HC (1947) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl Sci Res Sect A 1:27

    Article  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194(1):344–362

    Article  MathSciNet  MATH  Google Scholar 

  • Challis V, Guest JK (2009) Level set topology optimization of fluids in Stokes flow. Int J Numer Methods Eng 79(10):1284–1308

    Article  MathSciNet  MATH  Google Scholar 

  • Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70(1):10–17

    Article  MathSciNet  MATH  Google Scholar 

  • Cunha AL (2004) A fully Eulerian method for shape optimization with application to Navier–Stokes flows. PhD thesis, Carnegie Mellon University, Pittsburgh PA, USA

  • Daoud F, Firl M, Bletzinger K-U (2005) Filter techniques in shape optimization with CAD-free parametrization. In: 6th World congresses of structural and multidisciplinary optimization. Rio de Janeiro, Brazil

  • Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48(12):1741–1760

    Article  MATH  Google Scholar 

  • Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier–Stokes flows. J Comput Phys 230(17):6688–6708

    Article  MathSciNet  MATH  Google Scholar 

  • De Ruiter MJ, van Keulen F (2004) Topology optimization using a topology description function. Struct Multidisc Optim 26(6):406–416

    Article  Google Scholar 

  • De Ruiter MJ (2005) Topology optimization using a topology description function approach. PhD thesis, Technical University Delft

  • Duan X, Ma Y, Zhang R (2008a) Optimal shape control of fluid flow using variational level set method. Phys Lett A 372(9):1374—1379

    Article  MathSciNet  MATH  Google Scholar 

  • Duan XB, Ma YC, Zhang R (2008b) Shape-topology optimization of stokes flow via variational level set method. Appl Math Comput 202(1):200–209

    Article  MathSciNet  MATH  Google Scholar 

  • Duan XB, Ma YC, Zhang R (2008c) Shape-topology optimization for Navier–Stokes problem using variational level set method. J Comput Appl Math 222(2):487–499

    Article  MathSciNet  MATH  Google Scholar 

  • Evgrafov A, Gregersen MM, Sørensen MP (2011) Finite volumes discretization of topology optimization problems. In: USNCCM—11. Minneapolis and St. Paul, Minnesota, Accessed 25–28 July 2011

  • Gerstenberger A, Wall WA (2008) Enhancement of fixed-grid methods towards complex fluid-structure interaction applications. Int J Numer Methods Fluids 57(9):1227–1248

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstenberger A, Wall WA (2010) An embedded Dirichlet formulation for 3D continua. Int J Numer Methods Eng 82(5):537–563

    MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Engineering 66:461–484

    Article  MATH  Google Scholar 

  • Khadra K, Angot P, Parneix S, Caltagirone JP (2000) Fictitious domain approach for numerical modelling of Navier–Stokes equations. Int J Numer Methods Fluids 34(8):651–684

    Article  MATH  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2009) An explicit level-set approach for generalized shape optimization of fluids with the lattice Boltzmann method. Int J Numer Methods Fluids. doi:10.1002/fld.2193

    Google Scholar 

  • Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidisc Optim 42:495–516

    Article  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87(13):1229–1253

    MathSciNet  MATH  Google Scholar 

  • Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceedings of the 2nd Berkeley symposium on mathematical statistics and probability, 1950. University of California Press, Berkeley and Los Angeles, pp 481–492

    Google Scholar 

  • Maute K, Kreissl S, Makhija D, Yang R (2011) Topology optimization of heat conduction in nano-composites. In: Proceedings of the 9th World congress on structural and multidisciplinary optimization. Shizuoka, Japan, 13–17 June 2011

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  • Mohammadi B, Pironneau O (2008) Theory and practice of optimal shape design. Eur J Comput Mech 17(1–2):13–30

    Google Scholar 

  • Olesen LH, Okkels F, Bruus B (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Methods Eng 65:975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Othmer C (2008) A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int J Numer Methods Fluids 58(8):861–877

    Article  MathSciNet  MATH  Google Scholar 

  • Pingen G, Evgrafov A, Maute K (2007a) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidisc Optim 36(6):507–524

    Article  MathSciNet  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2007b) Application of a parametric level-set approach to topology optimization fluid with the Navier–Stokes and lattice Boltzmann equations. In: WCSMO07. Seoul, Korea, ISSMO, 21–25 May 2007

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2009) A parametric level-set approach for topology optimization of flow domains. Struct Multidisc Optim 41(1):117–131

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Zhou M (1991) Applications of the COC method in layout optimization. In: Eschenauer HA, Mattheck C, Olhoff N (eds) Proc. conference on engineering optimization on design processes. Berlin, Heidelberg, New York, pp 59–70

    Chapter  Google Scholar 

  • Sauerland H, Fries T-P (2011) The extended finite element method for two-phase and free-surface flows: a systematic study. J Comput Phys 230(9):3369–3390

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidisc Optim 16(1):168–75

    Google Scholar 

  • Sukumar N, Moës N, Moran B, Belytschko T (2000) Extended finite element method for three-dimensional crack modelling. Int J Numer Methods Eng 48(11):1549–1570

    Article  MATH  Google Scholar 

  • Svanberg K (1995) A globally convergent version of MMA without linesearch. In: Proceedings of the 1st World congress of structural and multidisciplinary optimization. Goslar, Germany, pp 9–16, 28 May–2 June 1995

  • Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221–242

    Article  MATH  Google Scholar 

  • Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2D filets using X-FEM and level set description. Struct Multidisc Optim 33(4–5):425–438

    Article  Google Scholar 

  • Wang MY, Wang X (2004) PDE-driven level sets, shape sensitivity and curvature flow for structural topology optimization. Comput Model Eng Sci 6(4):373–395

    MATH  Google Scholar 

  • Wang SY, Wang MY (2006) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65(11):1892–1922

    Article  MATH  Google Scholar 

  • Wei P, Wang M, Xing, X (2010) A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Des 42(8):708–719. Application-driven Shape Development

    Article  Google Scholar 

  • Yoon GH (2009) Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. In: 8th World congress on structural and multidisciplinary optimization

  • Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227(24):10,178–10,195

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation under grants DMI-0729529 and EFRI-1038305. The opinions and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the sponsoring organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Maute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreissl, S., Maute, K. Levelset based fluid topology optimization using the extended finite element method. Struct Multidisc Optim 46, 311–326 (2012). https://doi.org/10.1007/s00158-012-0782-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0782-8

Keywords

Navigation