Skip to main content

Advertisement

Log in

Genetic architecture of male floral traits required for hybrid wheat breeding

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This study revealed a complex genetic architecture of male floral traits in wheat, and Rht-D1 was identified as the only major QTL. Genome-wide prediction approaches but also phenotypic recurrent selection appear promising to increase outcrossing ability required for hybrid wheat seed production.

Abstract

Hybrid wheat breeding is a promising approach to increase grain yield and yield stability. However, the identification of lines with favorable male floral characteristics required for hybrid seed production currently poses a severe bottleneck for hybrid wheat breeding. This study therefore aimed to unravel the genetic architecture of floral traits and to assess the potential of genomic approaches to accelerate their improvement. To this end, we employed a panel of 209 diverse winter wheat lines assessed for male floral traits and genotyped with genome-wide markers as well as for Rht-B1 and Rht-D1. We found the highest proportion of explained genotypic variance for the Rht-D1 locus (11–24 %), for which the dwarfing allele Rht-D1b had a negative effect on anther extrusion, visual anther extrusion and pollen mass. The genome-wide scan detected only few QTL with small or medium effects, indicating a complex genetic architecture. Consequently, marker-assisted selection yielded only moderate prediction abilities (0.44–0.63), mainly relying on Rht-D1. Genomic selection based on weighted ridge-regression best linear unbiased prediction achieved higher prediction abilities of up to 0.70 for anther extrusion. In conclusion, recurrent phenotypic selection appears most cost-effective for the initial improvement of floral traits in wheat, while genome-wide prediction approaches may be worthwhile when complete marker profiles are already available in a hybrid wheat breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  • Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791

    Article  CAS  PubMed  Google Scholar 

  • Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  • Boeven PHG, Longin CFH, Würschum T (2016) A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129:1231–1245

    Article  PubMed  Google Scholar 

  • Börner A, Plaschke J, Korzun V, Worland AJ (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69–75

    Article  Google Scholar 

  • Buerstmayr M, Buerstmayr H (2015) Comparative mapping of quantitative trait loci for Fusarium head blight resistance and anther retention in the winter wheat population Capo × Arina. Theor Appl Genet 128:1519–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population. Theor Appl Genet 123:293–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) Mixed models for S language environments. ASReml-R reference manual: Release 3.0. Technical report. ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). https://www.vsni.co.uk/software/asreml

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393

    Article  Google Scholar 

  • De Vries AP (1971) Flowering biology of wheat, particularly in view of hybrid seed production—a review. Euphytica 20:152–170

    Article  Google Scholar 

  • De Vries AP (1972) Some aspects of cross-pollination in wheat (Triticum aestivum L.). 1. Pollen concentration in the field as influenced by variety, diurnal pattern, weather conditions and level as compared to the height of the pollen donor. Euphytica 21:185–203

    Article  Google Scholar 

  • De Vries AP (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.). 3. Anther length and number of pollen grains per anther. Euphytica 23:11–19

    Article  Google Scholar 

  • d’Souza L (1970) Untersuchungen über die Eignung des Weizens als Pollenspender bei der Fremdbefruchtung, verglichen mit Roggen, Triticale und Secalutricum (In German). Z Pflanzenzucht 63:246–269

    Google Scholar 

  • Echeverry-Solarte M, Kumar A, Kianian S, Mantovani EE, Simsek S, Alamri MS, Mergoum M (2014) Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat. Plant Genome 7. doi:10.3835/plantgenome2014.03.0013

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255

    Article  Google Scholar 

  • FAOSTAT (2016) Statistical databases and datasets of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 16 May 2016

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fruwirth C (1905) Das Blühen von Weizen und Hafer (in German). Dt landwirt Presse 32:737–738

    Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell G (ed) Progress in Plant Breeding–1. Butterworth-Heinemann, London, pp 1–35

    Chapter  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant: still a mystery unresolved. Plant Signal Behav 8:e25504

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink J (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom Proteom 9:166–177

    Article  CAS  Google Scholar 

  • Joppa LR, McNeal FH, Berg MA (1968) Pollen production and pollen shedding of hard red spring (Triticum aestivum L. em Thell.) and durum (T. durum Desf.) wheats. Crop Sci 8:487–490

    Article  Google Scholar 

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breeding 27:417–437

    Article  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Knopf C, Becker H, Ebmeyer E, Korzun V (2008) Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cer Res Comm 36:553–560

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed 133:433–441

    Article  Google Scholar 

  • Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X (2012) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Mühleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    Article  PubMed  Google Scholar 

  • Longin CFH, Reif JC, Würschum T (2014) Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor Appl Genet 127:1635–1641

    Article  PubMed  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Lu Q, Lillemo M, Skinnes H, He X, Shi J, Ji F, Dong Y, Bjørnstad Å (2013) Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126:317–334

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    Article  CAS  PubMed  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Meuwissen T, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G, Myles S (2015) LinkImpute: Fast and accurate genotype imputation for nonmodel organisms. G3 (Bethesda) 5:2383–2390

  • Mühleisen J, Piepho H, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Muqaddasi QH, Lohwasser U, Nagel M, Börner A, Pillen K, Röder MS (2016) Genome-wide association mapping of anther extrusion in hexaploid spring wheat. PLoS ONE 11:e0155494

    Article  PubMed  PubMed Central  Google Scholar 

  • Mutasa-Göttgens E, Hedden P (2009) Gibberellin as a factor in floral regulatory networks. J Exp Bot 60:1979–1989

    Article  PubMed  Google Scholar 

  • Ogutu JO, Schulz-Streeck T, Piepho H (2012) Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc 6(Suppl 2):S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Patterson HD (1997) Analysis of series of variety trials. In: Kempton RA, Fox PN, Cerezo M (eds) Statistical methods for plant variety evaluation, 1st edn. Chapman & Hall, London, pp 139–161

    Chapter  Google Scholar 

  • Pearce S, Saville R, Vaughan SP, Chandler PM, Wilhelm EP, Sparks CA, Al-Kaff N, Korolev A, Boulton MI, Phillips AL, Hedden P, Nicholson P, Thomas SG (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol 157:1820–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) `Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Piepho H, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2015) R: A Language and Environment for Statistical Computing. http://www.R-project.org/

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage G, de Isturiz MJ (1974) The inheritance of anther extrusion in two spring wheat varieties. Theor Appl Genet 45:126–133

    Article  CAS  PubMed  Google Scholar 

  • Sala OE, Chapin Iii FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Arun B, Joshi AK (2007) Comparative evaluation of exotic and adapted germplasm of spring wheat for floral characteristics in the Indo-Gangetic Plains of northern India. Plant Breed 126:559–564

    Article  Google Scholar 

  • Singh SK, Chatrath R, Mishra B (2010) Perspective of hybrid wheat research: a review. Indian J Agric Sci 80:1013–1027

    Google Scholar 

  • Skinnes H, Semagn K, Tarkegne Y, Marøy AG, Bjørnstad T (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129:149–155

    Article  CAS  Google Scholar 

  • Spindel JE, Begum H, Akdemir D, Collard B, Redoña E, Jannink J, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Stram DO, Lee JW (1994) Variance components testing in the longitudinal mixed effects model. Biometrics 50:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E, Møller IM, Murphy A (2015) Plant physiology and development, 6th edn. Sinauer Associates Inc., Publishers, Sunderland

    Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA 108:20260–20264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  PubMed Central  Google Scholar 

  • Waines JG, Hegde SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, MacCaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotech J 12:787–796

    Article  CAS  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Whittaker JC, Thompson R, Denham MC (2000) Marker-assisted selection using ridge regression. Genet Res 75:249–252

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenl AJ, Boulton MI, Powell W (2013a) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013b) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Williams E, Piepho H, Whitaker D (2011) Augmented p-rep designs. Biom J 53:19–27

    Article  PubMed  Google Scholar 

  • Wilson P, Driscoll CJ (1983) Hybrid Wheat. In: Frankel R (ed) Heterosis: reappraisal of theory and practice, 1st edn. Springer, Berlin, pp 94–123

    Chapter  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CFH, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2015) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA 112:15624–15629. doi:10.1073/pnas.1514547112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary D (1967) Disruptive selection, pollination systems and the origin of old world cultivated cereals. Cienc Cult 19:218

    Google Scholar 

Download references

Acknowledgments

We thank Sabit Rrecaj and Sebastian Hajek for their outstanding work in the field at the research station of the University of Hohenheim and we highly appreciate the help of the Bachelor student Nadine Bauer. The authors thank KWS for providing the genotypic data and parts of phenotypes and highly appreciate the work of the breeding teams at the KWS research stations in Seligenstadt and Wohlde, in particular Nicolas Roperch and Hugo Gonzales Dupuy, for collecting phenotypic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Ethics declarations

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 766 kb)

Table S1 List of genotypes (csv-file) (CSV 3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeven, P.H.G., Longin, C.F.H., Leiser, W.L. et al. Genetic architecture of male floral traits required for hybrid wheat breeding. Theor Appl Genet 129, 2343–2357 (2016). https://doi.org/10.1007/s00122-016-2771-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2771-6

Keywords

Navigation