Skip to main content
Log in

Hybrid breeding in autogamous cereals

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Hybrid breeding in autogamous cereals has a long history of attempts with moderate success. There is a vast amount of literature investigating the potential problems and solutions, but until now, market share of hybrids is still a niche compared to line varieties. Our aim was to summarize the status quo of hybrid breeding efforts for the autogamous cereals wheat, rice, barley, and triticale. Furthermore, the research needs for a successful hybrid breeding in autogamous cereals are intensively discussed. To our opinion, the basic requirements for a successful hybrid breeding in autogamous cereals are fulfilled. Nevertheless, optimization of the existing hybridization systems is urgently required and should be coupled with the development of clear male and female pool concepts. We present a quantitative genetic framework as a first step to compare selection gain of hybrid versus line breeding. The lack of precise empirical estimates of relevant quantitative genetic parameters, however, is currently the major bottleneck for a robust evaluation of the potential of hybrid breeding in autogamous cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abel S, Mollers C, Becker HC (2005) Development of synthetic Brassica napus lines for the analysis of “fixed heterosis” in allopolyploid plants. Euphytica 146:157–163

    Article  CAS  Google Scholar 

  • Ahokas H (1979) Cytoplasmic male sterility in barley. Acta Agric Scand 29:219–224

    Article  Google Scholar 

  • Barbosa-Neto JF, Sorrels ME, Cisar G (1996) Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39:1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2002) Breeding for quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Borghi B, Perenzin M (1994) Diallel analysis to predict heterosis and combining ability for grain yield, yield components and bread-making quality in bread wheat (T. aestivum). Theor Appl Genet 89:975–981

    Article  CAS  Google Scholar 

  • Bruns R, Peterson CJ (1998) Yield and stability factors associated with hybrid wheat. Euphytica 100:1–5

    Google Scholar 

  • Cochran WG (1951) Improvement by means of selection. In: Proceedings 2nd Berkeley Symposium Math Stat Prob, pp 449–470

  • Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariance’s among relatives when epistasis is present. Genetics 39:859–882

    PubMed  CAS  Google Scholar 

  • Coors JG, Pandey S (1999) The genetics and exploitation of heterosis in crops. ASA, CSSA, and SSSA, Madison

  • Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B (2002) Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123:273–285

    Article  CAS  Google Scholar 

  • D’Souza VL (1970) Investigations concerning the suitability of wheat as a pollen-donor for cross pollination by wind as compared to rye, Triticale and Secalotricum. Zeitschrift für Pflanzenzüchtung 63:246–269

    Google Scholar 

  • Dhillon BS, Singh J (1977) Combining ability and heterosis in diallel crosses of maize. Theor Appl Genet 49:117–122

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews, long term selection: crops, animals, and bacteria, part 2, vol 24. Wiley, New York, pp 109–151

  • Edwards IB (2001) Origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding, vol 1. Lavoisier publishing, Paris, pp 1019–1045

    Google Scholar 

  • Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow

    Google Scholar 

  • Fischer S, Möhring J, Schön CC, Piepho H-P, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breeding 127:446–451

    Article  Google Scholar 

  • Fischer S, Maurer HP, Würschum T, Möhring J, Piepho H-P, Schön CC, Thiemt E-M, Dhillon BS, Weissmann EA, Melchinger AE, Reif JC (2010) Development of heterotic groups in triticale. Crop Sci 50:584–590

    Article  Google Scholar 

  • Garcia AAF, Wang S, Melchinger AE, Zeng Z-B (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180:1707–1724

    Article  PubMed  Google Scholar 

  • Geiger HH, Miedaner T (2009) Rye breeding. In: Carena MJ (ed) Cereals (Handbook of Plant Breeding). vol 3. Springer, New York, pp 157–181

  • Gordillo AG, Geiger HH (2008) Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci 48:911–922

    Article  Google Scholar 

  • Gowda M, Kling CK, Würschum T, Liu W, Maurer HP, Hahn V, Reif JC (2010) Hybrid breeding in durum wheat: heterosis and combining ability. Crop Sci 50:2224–2230

    Article  Google Scholar 

  • Gowda M, Longin CFH, Lein V, Reif JC (2012a) Relevance of specific versus general combining ability effects in wheat. Crop Sci (In press)

  • Gowda M, Zhao Y, Maurer HP, Weissmann EA, Würschum T, Reif JC (2012b) Best linear unbiased prediction of triticale hybrid performance. Euphytica (in review)

  • Hallauer AR, Russell WA, Lamkey KR (1988) Corn breeding. In: Sprague GF, Dudley JW (eds) Corn and corn improvement, 3rd edn. Agron Monogr 18 ASA, CSSA, SSSA, Madison, pp 469–565

  • Hammer K (1977) Fragen zur Eignung des Pollens der Kulturgerste (Hordeum vulgare L. s.l.) für die Windbestäubung. Kulturpflanze 25:13–23 (in German)

    Article  Google Scholar 

  • He X-H, Zhang Y-M (2011) A complete solution for dissecting pure main and epistatic effects of QTL in triple testcross design. PLoS ONE 6:e24575

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M (2007) A diallel analysis of various traits in winter triticale. Plant Breed 126:19–23

    Article  Google Scholar 

  • Ikehashi H (1991) Genetics of hybrid sterility in wide hybridization in rice. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 113–127

    Google Scholar 

  • Ikehashi H, Araki H (1984) Varietal screening for compatibility types revealed in F1 fertility of distant crosses in rice. Jpn J Breed 34:304–312

    Google Scholar 

  • Jones JW (1926) Hybrid vigor in rice. J Am Soc Agron 18:423–428

    Article  Google Scholar 

  • Jordaan JP (1996) Hybrid wheat: advances and challenges. In: Reynolds MP et al (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 66–75

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breed 27:417–437

    Article  Google Scholar 

  • Keydel F (1972) Blütenbiologische Untersuchungen. 1. Offenblütigkeit verschiedener Winterweizensorten. Bayer Landw Jb 49:688–701 (in German)

    Google Scholar 

  • Keydel F (1977) Offenblütigkeit und Fremdbefruchtung bei selbstbefruchtenden Getreidenarten am Beispiel Winterweizen. Bericht über die Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein S. 22–24 (in German)

  • Keydel F (1985) Die Entwicklung von Hybridsorten bei Weizen mit Hilfe von Gametoziden. 1. Erfahrungen. In: Bericht über die Arbeitstagung 1985 der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein S. 13–23 (in German)

  • Koekemoer FP, van Eeden E, Bonjean AP (2011) An overview of hybrid wheat production in South Africa and review of current worldwide wheat hybrid developments. In: Bonjean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding, vol 2. Lavoisier publishing, Paris, pp 907–950

    Google Scholar 

  • Koemel JE Jr, Guenzi AC, Carver BF, Payton ME, Morgan GH, Smith EL (2004) Hybrid and pure line hard winter wheat yield and stability. Crop Sci 44:107–113

    Article  Google Scholar 

  • Kusterer B, Piepho H-P, Utz HF, Schön CC, Muminovic J, Meyer RC, Altmann T, Melchinger AE (2007) Heterosis for biomass-related traits in Arabidopsis investigated by a novel QTL analysis of the triple test cross design with recombinant inbred lines. Genetics 177:1839–1850

    Article  PubMed  CAS  Google Scholar 

  • Li SQ, Yang DC, Zhu YG (2007) Characterization and use of male sterility in rice breeding. J Integr Plant Biol 49:791–804

    Article  CAS  Google Scholar 

  • Longin CFH, Utz HF, Melchinger AE, Reif JC (2007) Hybrid maize breeding with doubled haploids. II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet 114:393–402

    Article  PubMed  CAS  Google Scholar 

  • Lu Z-M, Xu B-Q (2010) On significance of heterotic group theory in hybrid rice breeding. Rice Sci 17:94–98

    Article  Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2009) Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breed 24:397–408

    Article  CAS  Google Scholar 

  • Maruyama K, Kato H, Araki H (1991) Mechanized production of F1 seeds in rice [Oryza sativa] by mixed planting. JARQ 24:243–252

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. ASA-CSSA-SSSA Publication, Madison, pp 29–44

    Google Scholar 

  • Melchinger AE, Piepho HP, Utz HF, Muminović J, Wegenast T, Törjék O, Altmann T, Kusterer B, Zeng ZB, Schön CC (2007a) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837

    Article  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Piepho HP, Zeng ZB, Schön CC (2007b) The role of epistasis in the manifestation of heterosis—a systems-oriented approach. Genetics 177:1815–1825

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schon CC (2008) Genetic expectations of quantitative trait loci main and interaction effects obtained with the triple testcross design and their relevance for the analysis of heterosis. Genetics 178:2265–2274

    Article  PubMed  CAS  Google Scholar 

  • Merfert W, Faustmann M, Täubert K (1987) Höhe und Verbreitung von Hybrideffekten bei Weizen. Arch. Züchtungsforsch 17:63–72 (in German)

    Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetics studies. Trends Plant Sci 12:433–436

    Article  PubMed  CAS  Google Scholar 

  • Mühleisen J, Maurer HP, Stiewe G, Bury P, Reif JC (2012) Hybrid breeding in barley. Crop Science In review

  • Nalepa S (1990) Hybrid triticale: present and future In: Proceedings 2nd International Triticale Symposium, Passo Fundo, Brazil, pp 402–407

  • Oettler G, Burger H, Melchinger AE (2003) Heterosis and combining ability for grain yield and other agronomic traits in winter triticale. Plant Breed 122:318–321

    Article  Google Scholar 

  • Oettler G, Heinrich N, Miedaner T (2004) Estimates of additive and dominance effects for Fusarium head blight resistance of winter triticale. Plant Breed 123:525–530

    Article  Google Scholar 

  • Oettler G, Tams SH, Utz HF, Bauer E, Melchinger AE (2005) Prospects for hybrid breeding in winter triticale: I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Sci 45:1476–1482

    Article  Google Scholar 

  • Omarov DS (1976) Some selective genetic aspects of the biology of flowering and fertility in barley. In: Proceedings 3rd International Barley Genet Symposium Munich, pp 802–804

  • Oury F-X, Brabant P, Berard P, Pluchard P (2000) Predicting hybrid value in bread wheat: biometric modeling based on a top-cross design. Theor Appl Genet 100:96–104

    Article  Google Scholar 

  • Ouyang Y, Chen J, Ding J, Zhang Q (2009) Advances in the understanding of inter-subspecific hybrid sterility and wide-compatibility in rice. Chinese Sci Bull 54:2332–2341

    Article  CAS  Google Scholar 

  • Perenzin M, Corbellini M, Accerbi M, Vaccion P, Borghi B (1998) Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica 100:273–279

    Article  Google Scholar 

  • Pickett AA (1993) Hybrid wheat—results and problems. In: Advances in Plant Breeding 15, Paul Parey Scientific Publishers, Berlin

  • Piepho HP (1998) Methods for comparing the yield stability of cropping systems: a review. J Agron Crop Sci 180:193–213

    Article  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119:3–15

    Article  Google Scholar 

  • Ramage RT (1965) Balanced tertiary trisomics for use in hybrid seed production. Crop Sci 5:177–178

    Article  Google Scholar 

  • Ramage RT (1983) Heterosis and hybrid seed production in barley. In: Frankel R (ed) Heterosis: reappraisal of theory and practice. (Monogr Theor Appl Genet vol 6). Springer, Berlin Heidelberg New York, pp 71–93

    Google Scholar 

  • Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact of genetic divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Kusterer B, Piepho H-P, Meyer RC, Altmann T, Schon CC, Melchinger AE (2009) Unraveling epistasis with triple testcross progenies of near-isogenic lines. Genetics 181:247–257

    Article  PubMed  Google Scholar 

  • Schnell FW (1961) Heterosis and inbreeding effect. Schriftenreihe des Max-Planck-Instituts für Tierzucht und Tierernährung, pp 251–272 (in German)

  • Schnell FW (1965) Die Covarianz zwischen Verwandten in einer genorthogonalen Population. I. Allgemeine Theorie. Biometrische Z 7:1–49 (in German)

    Article  CAS  Google Scholar 

  • Schnell FW, Geiger HH (1970) Zur Beeinflußung der Heterosis durch Epistasie. Die Naturwissenschaften 9:461–462 (in German)

    Article  Google Scholar 

  • Scholz F, Künzel G (1982) Progress and problems with hybrid barley. In: Barley Genetics IV, Proc 4th Barley Genet Symp, Edinburgh, UK, pp 758–765

  • Shull GH (1908) The composition of a field of maize. Am Breeders Assoc Rep 4:296–301

    Google Scholar 

  • Si HM, Liu WZ, Fu YP, Sun ZX, Hu GC (2011) Current situation and suggestions for development of two-line hybrid rice in china. Chinese J Rice Sci 25:522–544 (in Chinese)

    Google Scholar 

  • Singh SK, Chatrath R, Mishra B (2010) Perspective of hybrid wheat research: a review. Indian J Agric Sci 80:1013–1027

    Google Scholar 

  • Suneson CA (1940) A male sterile character in barley. J Hered 31:213–214

    Google Scholar 

  • Virmani SS (1994) Prospects of hybrid rice in the tropics and subtropics. In: Hybrid rice technology: new developments and future prospects. Selected papers from the Int Rice Res Conf, Manila, pp 7–20

  • Virmani SS (1996) Hybrid rice. Adv Agronomy 57:377–462

    Article  Google Scholar 

  • Virmani SS, Athwal DS (1972) Genetic variability in floral characteristics influencing outcrossing in Oryza sativa L. Crop Sci 13:66–67

    Article  Google Scholar 

  • Yan WG, Li SF (1987) Study on out-crossing characteristics among male sterile lines containing same nucleus in rice. Hybrid Rice 4:8–11 (in Chinese)

    Google Scholar 

  • Yan W, Li Y, Agrama H, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice. Mol Breed 24:277–292

    Article  PubMed  Google Scholar 

  • Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167:1493–1505

    Article  PubMed  CAS  Google Scholar 

  • Yuan LP (1966) A preliminary report on male sterility in rice. Chinese Sci Bull 4:32–34 (in Chinese)

    Google Scholar 

  • Yuan LP, Virmani SS (1988) Status of hybrid rice research and development. In: Hybrid rice: Proc Int Symp Hybrid Rice in Changsha, Hunan, China, 1986. International Rice Research Institute, Manila, Philippines, pp 7–24

  • Yuan LP, Yang ZY, Yang JB (1994) Hybrid rice research in China. In: Hybrid rice technology: New developments and future prospects. Selected papers from the International Rice Research Conference, Manila, pp 143–148

Download references

Acknowledgments

M. Gowda was supported by BMBF within the HYWHEAT project (Grant ID FKZ0315945D). J. Mühleisen was supported by BMELV/BLE within the „Züchtung von Triticalesorten für extreme Umwelten – eine Frage des Sortentyps?“project (Grant ID 2814502410). H. L. Zhang was supported by NSFC (Grant ID 31171613) and the National Basic Research Program of China (Grant ID 2010CB125904). Furthermore, we thank Dr. Karim Ammar, CIMMYT, Dr. Erhard Ebmeyer, KWS Lochow GmbH, Prof. Hartwig H. Geiger, University of Hohenheim, Dr. Ibrahim Kazman, Lantmännen SW Seed Hadmersleben GmbH, Dr. Volker Lein, Saaten Union Recherche, Dr. Ralf Schachschneider, Nordsaat Saatzuchtgesellschaft mbH, Dr. Johannes Schacht, Limagrain GmbH, Dr. Gunther Stiewe, Syngenta, Dr. Sigrid Weissmann and Dr. Elmar Weissmann, Saatzucht Dr. Hege GbR and Dr. F. Xie, IRRI for their valuable suggestions to improve the manuscript. We thank the two anonymous reviewers for their suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Friedrich Horst Longin.

Additional information

Communicated by R. Varshney.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 115 kb)

Appendix

Appendix

Selection gain was calculated based on the formula of Cochran (1951). There is a lack of robust information on variance components, correlations, and other parameters relevant to the calculation of selection gain. As our aim was to roughly investigate trends in hybrid and line breeding, we assumed a selection intensity (i) and square root of heritability (h) of i = h = 1 and modified only the genetic variance by assuming \( \sigma_{G}^{2} ({\text{line}}) = 1 \), while \( \sigma_{G}^{2} ({\text{hybrid}}) \) was either \( 0.5\sigma_{G}^{2} ({\text{line}}) \) or \( 0.9\sigma_{G}^{2} ({\text{line}}) \). For the factorial crosses, we assumed that the budget was 20 % of that of a line breeding program (Longin et al. 2007) and that \( \sigma_{\text{SCA}}^{2} \) amounted to 20 % of the total genetic variance and calculated it as an additional one-stage selection gain. Selection gain across time was calculated as the sum of the single selection cycles, assuming that all variances were constant across years. The selection gain of the factorials, however, was only added once after each selection cycle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longin, C.F.H., Mühleisen, J., Maurer, H.P. et al. Hybrid breeding in autogamous cereals. Theor Appl Genet 125, 1087–1096 (2012). https://doi.org/10.1007/s00122-012-1967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1967-7

Keywords

Navigation