Skip to main content
Log in

Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a destructive wheat disease of global importance. Resistance breeding depends heavily on the Fhb1 gene. The CIMMYT line Shanghai-3/Catbird (SHA3/CBRD) is a promising source without this gene. A recombinant inbred line (RIL) population from the cross of SHA3/CBRD with the German spring wheat cv. Naxos was evaluated for FHB resistance and related traits in field trials using spray and spawn inoculation in Norway and point inoculation in China. After spray and spawn inoculation, FHB severities were negatively correlated with both anther extrusion (AE) and plant height (PH). The QTL analysis showed that the Rht-B1b dwarfing allele co-localized with a QTL for low AE and increased susceptibility after spawn and spray inoculation. In general, SHA3/CBRD contributed most of the favorable alleles for resistance to severity after spray and spawn inoculation, while Naxos contributed more favorable alleles for reduction in FDK and DON content and resistance to severity after point inoculation. SHA3/CBRD contributed a major resistance QTL close to the centromere on 2DLc affecting FHB severity and DON after all inoculation methods. This QTL was also associated with AE and PH, with high AE and tall alleles contributed by SHA3/CBRD. Several QTL for AE and PH were detected, and low AE or reduced PH was always associated with increased susceptibility after spawn and spray inoculation. Most of the other minor FHB resistance QTL from SHA3/CBRD were associated with AE or PH, while the QTL from Naxos were mostly not. After point inoculation, no other QTL for FHB traits was associated with AE or PH, except the 2DLc QTL which was common across all inoculation methods. Marker-assisted selection based on the 2DLc QTL from SHA3/CBRD combined with phenotypic selection for AE is recommended for resistance breeding based on this valuable source of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FHB:

Fusarium head blight

AE:

Anther extrusion

PH:

Plant height

FDK:

Fusarium damaged kernels

DON:

Deoxynivalenol

CI:

Confidence interval

DArT:

Diversity arrays technology

d °C:

Day degrees

CIM:

Composite interval mapping

SIM:

Simple interval mapping

References

  • Aastveit AH, Aastveit K (1993) Effects of genotype-environment interactions on genetic correlations. Theor Appl Genet 86(8):1007–1013. doi:10.1007/bf00211054

    Article  Google Scholar 

  • Akbari M, Kilian A, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Fetch JM, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102(8):1164–1168

    Article  CAS  Google Scholar 

  • Bai GH, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89(4):343–348

    Article  PubMed  CAS  Google Scholar 

  • Beyer M, Klix MB, Klink H, Verreet JA (2006) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination. J Plant Dis Protect 113(6):241–246

    CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci 40(4):1012–1018

    Article  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104(1):84–91

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003a) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107(3):503–508

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Stierschneider M, Steiner B, Lemmens M, Griesser M, Nevo E, Fahima T (2003b) Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130(1):17–23

    Article  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128(1):1–26

    Article  CAS  Google Scholar 

  • Champeil A, Dore T, Fourbet JF (2004) Fusarium head blight: epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci 166(6):1389–1415. doi:10.1016/j.plantsci.2004.02.004

    Article  CAS  Google Scholar 

  • Chen J, Griffey CA, Maroof MAS, Stromberg EL, Biyashev RM, Zhao W, Chappell MR, Pridgen TH, Dong Y, Zeng Z (2006) Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14. Plant Breed 125(1):99–101

    Article  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Brule-Babel A (2007) Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 114(3):429–437

    Article  PubMed  CAS  Google Scholar 

  • Dill-Macky R, Jones RK (2000) The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis 84(1):71–76

    Article  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115(5):617–625

    Article  PubMed  CAS  Google Scholar 

  • Edwards SG (2004) Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol Lett 153(1):29–35. doi:10.1016/j.toxlet.2004.04.022

    Article  PubMed  CAS  Google Scholar 

  • Engle JS, Lipps PE, Graham TL, Boehm MJ (2004) Effects of choline, betaine, and wheat floral extracts on growth of Fusarium graminearum. Plant Dis 88(2):175–180

    Article  CAS  Google Scholar 

  • Fuentes RG, Mickelson HR, Busch RH, Dill-Macky R, Evans CK, Thompson WG, Wiersma JV, Xie W, Dong Y, Anderson JA (2005) Resource allocation and cultivar stability in breeding for Fusarium head blight resistance in spring wheat. Crop Sci 45(5):1965–1972

    Article  CAS  Google Scholar 

  • Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russell GE (ed) Progress in plant breeding, Butterworths, London

  • Gilsinger J, Kong L, Shen X, Ohm H (2005) DNA markers associated with low Fusarium head blight incidence and narrow flower opening in wheat. Theor Appl Genet 110(7):1218–1225. doi:10.1007/s00122-005-1953-4

    Article  PubMed  CAS  Google Scholar 

  • Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol 48(2):202–208

    Article  Google Scholar 

  • Holzapfel J, Voss HH, Miedaner T, Korzun V, Haberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117(7):1119–1128. doi:10.1007/s00122-008-0850-z

    Article  PubMed  Google Scholar 

  • Jayatilake D, Bai G, Dong Y (2011) A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theor Appl Genet 122(6):1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Ji F, Li H, Xu J, Shi J (2011) Enzyme-linked immunosorbent-assay for deoxynivalenol (DON). Toxins 3(8):968–978

    Article  PubMed  CAS  Google Scholar 

  • Jia G, Chen PD, Qin GJ, Bai GH, Wang X, Wang SL, Zhou B, Zhang SH, Liu DJ (2005) QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra’s’. Euphytica 146(3):183–191

    Article  CAS  Google Scholar 

  • Jiang GL, Dong Y, Shi J, Ward RW (2007a) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115(8):1043–1052. doi:10.1007/s00122-007-0630-1

    Article  PubMed  Google Scholar 

  • Jiang GL, Shi J, Ward RW (2007b) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116(1):3–13. doi:10.1007/s00122-007-0641-y

    Article  PubMed  CAS  Google Scholar 

  • Jones RK, Mirocha CJ (1999) Quality parameters in small grains from Minnesota affected by Fusarium head blight. Plant Dis 83(6):506–511

    Article  Google Scholar 

  • Kang Z, Buchenauer H (2000) Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum. Mycol Res 104(09):1083–1093

    Article  Google Scholar 

  • Kubo K, Kawada N, Fujita M, Hatta K, Oda S, Nakajima T (2010) Effect of cleistogamy on Fusarium head blight resistance in wheat. Breeding Sci 60(4):405–411

    Article  Google Scholar 

  • Li H, Ji F, Xu JH, Wang YZ, Shi JR (2007) Enzyme-linked immunosorbent-assay for deoxynivalenol (DON). Sci Agric Sinica 40(4):721–726

    CAS  Google Scholar 

  • Liang X, Chen X, Chen C (1981) Factors affecting infection of some winter wheat cultivars to scab diseases caused by Fusarium graminearum Schw. Acta Phytopath Sinica 11(2):7–12 (in Chinese)

    Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116(8):1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Skinnes H, Brown JKM (2010) Race specific resistance to powdery mildew in Scandinavian wheat cultivars, breeding lines and introduced genotypes with partial resistance. Plant Breed 129(3):297–303

    Article  CAS  Google Scholar 

  • Lin F, Xue SL, Zhang ZZ, Zhang CQ, Kong ZX, Yao GQ, Tian DG, Zhu HL, Li CJ, Cao Y, Wei JB, Luo QY, Ma ZQ (2006) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. II: type I resistance. Theor Appl Genet 112(3):528–535

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Wang Z, Zhao W (1985) Fusarium head bilght resistance in Wheat germplasm. Acta Agric Shanghai 1(2):75–84 (in Chinese)

    Google Scholar 

  • Liu SY, Hall MD, Griffey CA, McKendry AL (2009) Meta-analysis of QTL associated with Fusarium head blight resistance in wheat. Crop Sci 49(6):1955–1968

    Article  CAS  Google Scholar 

  • Lu Q, Szabo-Hever A, Bjørnstad Å, Lillemo M, Semagn K, Mesterhazy A, Ji F, Shi J, Skinnes H (2011) Two major resistance quantitative trait loci are required to counteract the increased susceptibility to Fusarium head blight of the dwarfing gene in wheat. Crop Sci 51(6):2430–2438. doi:10.2135/cropsci2010.12.0671

    Article  Google Scholar 

  • Lu Q, Bjørnstad Å, Ren Y, Asad M, Xia X, Chen X, Ji F, Shi J, Lillemo M (2012) Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments. Theor Appl Genet 125(2):297–309. doi:10.1007/s00122-012-1834-6

    Article  PubMed  CAS  Google Scholar 

  • Mao S, Wei Y, Cao W, Lan X, Yu M, Chen Z, Chen G, Zheng Y (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174(3):343–356

    Article  Google Scholar 

  • Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124(4):329–333

    Article  Google Scholar 

  • McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81(12):1340–1348

    Article  Google Scholar 

  • Mesterhazy A, Bartok T, Mirocha CG, Komoroczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118(2):97–110

    Article  CAS  Google Scholar 

  • Miedaner T, Voss HH (2008) Effect of dwarfing Rht genes on Fusarium head blight resistance in two sets of near-isogenic lines of wheat and check cultivars. Crop Sci 48(6):2115–2122

    Article  Google Scholar 

  • Mirocha CJ, Kolaczkowski E, Xie WP, Yu H, Jelen H (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography mass spectrometry. J Agric Food Chem 46(4):1414–1418

    Article  CAS  Google Scholar 

  • Paul PA, Lipps PE, Madden LV (2005) Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology 95(10):1225–1236. doi:10.1094/PHYTO-95-1225

    Article  PubMed  CAS  Google Scholar 

  • Percival J (1921) The wheat plant. Duckworth, London

    Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella Zeae. Phytopathology 53(7):831–838

    Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49(5):545–555

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47(1):294–303

    Article  CAS  Google Scholar 

  • Shi JR, Xu DH, Yang HY, Lu QX, Ban T (2008) DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTLs from different germplasm. Genetica 133(1):77–84. doi:10.1007/s10709-007-9186-x

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S, Crossa J (2001) Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119(1–2):241–244

    Article  CAS  Google Scholar 

  • Skinnes H, Tarkegne Y, Dieseth JA, Bjornstad A (2008) Associations between anther extrusion and Fusarium head blight in European wheat. Cereal Res Commun 36:223–231

    Article  Google Scholar 

  • Skinnes H, Semagn K, Tarkegne Y, Maroy AG, Bjornstad A (2010) The inheritance of anther extrusion in hexaploid wheat and its relationship to Fusarium head blight resistance and deoxynivalenol content. Plant Breed 129(2):149–155

    Article  CAS  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46(4):555–564

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114. doi:10.1007/s00122-004-1740-7

    Article  PubMed  CAS  Google Scholar 

  • Srinivasachary, Gosman N, Steed A, Hollins TW, Bayles R, Jennings P, Nicholson P (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118(4):695–702

    Article  PubMed  CAS  Google Scholar 

  • Srinivasachary Gosman N, Steed A, Simmonds J, Leverington-Waite M, Wang Y, Snape J, Nicholson P (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116(8):1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109(1):215–224

    Article  PubMed  CAS  Google Scholar 

  • Strange RN, Smith H (1971) Fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum. Physiol Plant Pathol 1(2):141–145

    Article  Google Scholar 

  • Strange RN, Majer JR, Smith H (1974) The isolation and identification of choline and betaine as the two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro. Physiol Plant Pathol 4(2):277–290. doi:10.1016/0048-4059(74)90015-0

    Article  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a computer program to map QTL. Institute of plant breeding, seed science and population genetics. University of Hohenheim, Stuttgart

  • Van Ooijen J, Voorrips R (2001) Joinmap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Voss HH, Holzapfel J, Hartl L, Korzun V, Rabenstein F, Ebmeyer E, Coester H, Kempf H, Miedaner T (2008) Effect of the Rht-D1 dwarfing locus on Fusarium head blight rating in three segregating populations of winter wheat. Plant Breed 127(4):333–339. doi:10.1111/j.1439-0523.2008.01518.x

    Article  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39(3):805–811

    Article  CAS  Google Scholar 

  • Wiśniewska H, Perkowski J, Kaczmarek Z (2004) Scab response and deoxynivalenol accumulation in spring wheat kernels of different geographical origins following inoculation with Fusarium culmorum. J Phytopathol 152(11–12):613–621. doi:10.1111/j.1439-0434.2004.00904.x

    Article  Google Scholar 

  • Xue S, Xu F, Tang M, Zhou Y, Li G, An X, Lin F, Xu H, Jia H, Zhang L, Kong Z, Ma Z (2011) Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theor Appl Genet 123(6):1055–1063. doi:10.1007/s00122-011-1647-z

    Article  PubMed  Google Scholar 

  • Yan W, Li HB, Cai SB, Ma HX, Rebetzke GJ, Liu CJ (2011) Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Plant Pathol 60(3):506–512. doi:10.1111/j.1365-3059.2011.02426.x

    Article  Google Scholar 

  • Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12(4):309–317

    Article  CAS  Google Scholar 

  • Yang ZP, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48(2):187–196

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Kawada N, Tohnooka T (2005) Effect of row type, flowering type and several other spike characters on resistance to Fusarium head blight in barley. Euphytica 141(3):217–227. doi:10.1007/s10681-005-7008-8

    Article  Google Scholar 

  • Yoshida M, Kawada N, Nakajima T (2007) Effect of infection timing on Fusarium head blight and mycotoxin accumulation in open- and closed-flowering barley. Phytopathology 97(9):1054–1062. doi:10.1094/PHYTO-97-9-1054

    Article  PubMed  Google Scholar 

  • Yu JB, Bai GH, Zhou WC, Dong YH, Kolb FL (2008) Quantitative trait loci for Fusarium head blight resistance in a recombinant inbred population of Wangshuibai/Wheaton. Phytopathology 98(1):87–94

    Article  PubMed  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45(4):719–727

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Ph.D. scholarship of the first author was funded by the Norwegian University of Life Sciences, and the research was supported by grants from the Research Council of Norway (projects no. 178273 and 185046), and the research foundation of Jiangsu, China (projects BE2010757, BZ2009098, SCX(11)2018 and CX(11)2071). Additionally, the authors gratefully acknowledge their technicians, Yalew Tarkegne for the preparation of Fusarium inoculum and technical assistance in the field and Anne Guri Marøy for the marker analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiongxian Lu or Morten Lillemo.

Additional information

Communicated by J. Snape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Lillemo, M., Skinnes, H. et al. Anther extrusion and plant height are associated with Type I resistance to Fusarium head blight in bread wheat line ‘Shanghai-3/Catbird’. Theor Appl Genet 126, 317–334 (2013). https://doi.org/10.1007/s00122-012-1981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1981-9

Keywords

Navigation