Skip to main content
Log in

A unified framework for hybrid breeding and the establishment of heterotic groups in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Global wheat genetic diversity can be used in a unified framework to support and accelerate hybrid breeding and the development of heterotic groups in wheat.

Abstract

Hybrid wheat breeding has great potential to increase the global wheat grain yield level particularly in view of the increasing abiotic and biotic stress challenges as well as variable climatic conditions. For the long-term success of hybrid wheat breeding and the maximum exploitation of heterosis, high-yielding heterotic patterns must be established. Here, we propose a unified framework for hybrid breeding and the establishment of heterotic groups in autogamous crops and exemplify it for hybrid wheat breeding in Germany. A key component is the establishment of genetic distance between heterotic groups and in this context, we assessed genetic diversity in a global collection of 1110 winter wheat varieties released during the past decades in 35 countries but with a focus on European origin. Our analyses revealed the absence of major population structure but nevertheless suggest genetically distinct subgroups with potential for hybrid wheat breeding. Taking our molecular results and additional phenotypic data together, we propose how global genetic diversity can be used to accelerate and support reciprocal recurrent selection for the development of genetically distinct heterotic groups in hybrid wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acquaah G (2012) Principles of plant genetics and breeding, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Albrecht T, Oberforster M, Kempf H, Ramgraber L, Schacht J, Kazman E, Zechner E, Neumayer A, Hartl L, Mohler V (2015) Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheats. J Appl Genet 56:277–285

    Article  CAS  PubMed  Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alheit KV, Maurer HP, Reif JC, Tucker MR, Hahn V, Weissmann EA, Würschum T (2012) Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticale (× Triticosecale Wittmack). BMC Genom 13:235

    Article  CAS  Google Scholar 

  • Auvuchanon A (2010) Genetic diversity of wheat cultivars from Turkey and U.S. Great Plains. Dissertation, University of Nebraska

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Barbosa-Neto JF, Sorrells ME, Cisar G (1996) Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Bonman JM, Babiker EM, Cuesta-Marcos A, Esvelt-Klos K, Brown-Guedira G, Chao S, See D, Chen J, Akhunov E, Zhang J, Bockelman HE, Gordon TC (2015) Genetic diversity among wheat accessions from the USDA national small grains collection. Crop Sci 55:1243–1253

    Article  Google Scholar 

  • Brears T, Bingham J (1989) Exploitation of heterosis in hybrid wheat using gametocides. Vortr. Pflanzenzüchtg. 16:397–409; in Science for Plant Breeding 27 Feb–4 March 1989 Proc. XII Cong. EUCARPIA

  • Bundessortenamt (2014) Beschreibende Sortenliste: Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben, Zwischenfrüchte. http://www.bundessortenamt.de/internet30/fileadmin/Files/PDF/bsl_getreide_2014.pdf. Accessed 21 July 2015

  • Carver BF, Klatt AR, Krenzer EG (2001) US hard winter wheat pool. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Intercept, London, pp 445–467

    Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo M, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genom 11:727

    Article  CAS  Google Scholar 

  • Chen X, Min D, Yasir TA, Hu Y (2012) Genetic diversity, population dtructure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS One 7:e44510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S, Cao L, Zhuang J, Chen S, Zhan X, Fan Y, Zhu D, Min S (2007) Super hybrid rice breeding in China: Achievements and prospects. J Integr Plant Biol 49:805–810

    Article  CAS  Google Scholar 

  • Corbellini M, Perenzin M, Accerbi M, Vaccino P, Borghi B (2002) Genetic diversity in bread wheat, as revealed by coefficient of parentage and molecular markers, and its relationship to hybrid performance. Euphytica 123:273–285

    Article  CAS  Google Scholar 

  • Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red winter wheat regions of the United States. Proc Natl Acad Sci USA 83:5583–5586

    Article  CAS  Google Scholar 

  • Curtis F, Nilsson M (2012) Collection systems for royalties in wheat: An international study. Bio Sci Law Rev 12(6):1–40

    Google Scholar 

  • Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA (2012) Copy number variation affecting the photoperiod-B1 and vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One 7:e33234

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreisigacker S, Melchinger AE, Zhang P, Ammar K, Flachenecker C, Hoisington D, Warburton ML (2005) Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage. Euphytica 144:51–59

    Article  CAS  Google Scholar 

  • Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Duvick DN, Smith JSC, Cooper M (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews: part 2: long-term selection: crops, animals, and bacteria. John Wiley & Sons Inc, Hoboken, pp 109–151

    Google Scholar 

  • El-Basyoni I, Baenziger PS, Dweikat I, Wang D, Eskridge K, Saadalla M (2013) Using DArT markers to monitor genetic diversity throughout selection: a case study in Nebraska’s winter wheat breeding nurseries. Crop Sci 53:2363–2373

    Article  Google Scholar 

  • El-Maghraby MA, Moussa ME, Hana NS, Agrama HA (2005) Combining ability under drought stress relative to SSR diversity in common wheat. Euphytica 141:301–308

    Article  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex

    Google Scholar 

  • FAOSTAT (2015) Statistical databases and datasets of the Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 14 Aug 2015

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Xiao M, Hayward A, Fu Y, Liu G, Jiang G, Zhang H (2014) Utilization of crop heterosis: a review. Euphytica 197:161–173

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    Article  CAS  PubMed  Google Scholar 

  • Gowda M, Longin CFH, Lein V, Reif JC (2012) Relevance of specific versus general combining ability in winter wheat. Crop Sci 52:2494–2500

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Article  Google Scholar 

  • Hagdorn S, Lamkey KR, Frisch M, Guimarães PEO, Melchinger AE (2003) Molecular genetic diversity among progenitors and derived elite lines of BSSS and BSCB1 maize populations. Crop Sci 43:474–482

    Article  CAS  Google Scholar 

  • Hao CY, Perretant MR, Choulet F, Wang LF, Paux E, Sourdille P, Zhang XY, Feuillet C, Balfourier F (2010) Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Theor Appl Genet 121:1209–1225

    Article  CAS  PubMed  Google Scholar 

  • Horvath A, Didier A, Koenig J, Exbrayat F, Charmet G, Balfourier F (2009) Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor Appl Genet 119:1523–1537

    Article  CAS  PubMed  Google Scholar 

  • Kempe K, Gils M (2011) Pollination control technologies for hybrid breeding. Mol Breed 27:417–437

    Article  Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One 10:e0129580

    Article  PubMed  PubMed Central  Google Scholar 

  • Krystkowiak K, Adamski T, Surma M, Kaczmarek Z (2009) Relationship between phenotypic and genetic diversity of parental genotypes and the specific combining ability and heterosis effects in wheat (Triticum aestivum L.). Euphytica 165:419–434

    Article  Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014a) Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.). Plant Breed 133:433–441

    Article  Google Scholar 

  • Langer SM, Longin CFH, Würschum T (2014b) Flowering time control in European winter wheat. Front Plant Sci 5:537

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurie DA, Turner AS (2001) Molecular characterisation of major genes controlling photoperiod response and vernalisation requirement in wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Intercept, London, pp 763–781

    Google Scholar 

  • Liu Z, Pei Y, Pu Z (1999) Relationship between hybrid performance and genetic diversity based on RAPD markers in wheat, Triticum aestivum L. Plant Breed 118:119–123

    Article  Google Scholar 

  • Liu Z, Pei Y, Pu Z (2001) Comparison of three methods for developing heterotic groups in wheat (Triticum aestivum). In: Bedö Z, Láng L (eds) Wheat in a global environment: Proceedings of the 6th International Wheat Conference, 5–9 June 2000, Budapest, Hungary. Springer, Dordrecht, pp 555–560

    Chapter  Google Scholar 

  • Longin CFH, Utz HF, Melchinger AE, Reif JC (2007) Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability. Theor Appl Genet 114:393–402

    Article  CAS  PubMed  Google Scholar 

  • Longin CFH, Mühleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  PubMed  Google Scholar 

  • Longin CFH, Gowda M, Mühleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    Article  PubMed  Google Scholar 

  • Longin CFH, Reif JC, Würschum T (2014) Long-term perspective of hybrid versus line breeding in wheat based on quantitative genetic theory. Theor Appl Genet 127:1635–1641

    Article  PubMed  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Martin JM, Talbert LE, Lanning SP, Blake NK (1995) Hybrid performance in wheat as related to parental diversity. Crop Sci 35:104–108

    Article  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Melchinger AE (1993) Use of RFLP markers for analysis of genetic relationships among breeding materials and prediction of hybrid performance. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International Crop Science I. CSSA, Madison, pp 621–628

    Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. Chapter 10. In: Coors JG, Pandey S (eds) The genetics and exploitation of heterosis in crops. CSSA, Madison, pp 99–118

    Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Lamkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA, Madison, pp 29–44

    Google Scholar 

  • Menkir A, Melake-Berhan A, The C, Ingelbrecht I, Adepoju A (2004) Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers. Theor Appl Genet 108:1582–1590

    Article  CAS  PubMed  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breed 28:647–655

    Article  Google Scholar 

  • Morgan CL, Austin RB, Ford MA, Bingham J, Angus WJ, Chowdhury S (1989) An evaluation of F1 hybrid winter wheat genotypes produced using a chemical hybridizing agent. J Agric Sci 112:143–149

    Article  Google Scholar 

  • Mühleisen J, Piepho H, Maurer HP, Longin CFH, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  PubMed  Google Scholar 

  • Nguyen V, Fleury D, Timmins A, Laga H, Hayden M, Mather D, Okada T (2015) Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. Theor Appl Genet 128:953–964

    Article  CAS  PubMed  Google Scholar 

  • Nielsen NH, Backes G, Stougaard J, Andersen SU, Jahoor A (2014) Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS One 9:e94000

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmstead AL, Rhode PW (2002) The red queen and the hard reds: productivity growth in American wheat, 1800–1940. J Econ Hist 62:929–966

    Article  Google Scholar 

  • Olmstead AL, Rhode PW (2011) Adapting North American wheat production to climatic challenges, 1839–2009. Proc Natl Acad Sci USA 108:480–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orabi J, Jahoor A, Backes G (2014) Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers. Euphytica 197:447–462

    Article  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pavlopoulos GA, Soldatos TG, Barbosa-Silva A, Schneider R (2010) A reference guide for tree analysis and visualization. Bio Data Min 3:1

    Article  Google Scholar 

  • Perenzin M, Corbellini M, Accerbi M, Vaccino P, Borghi B (1998) Bread wheat: F1 hybrid performance and parental diversity estimates using molecular markers. Euphytica 100:273–279

    Article  Google Scholar 

  • Porsche W, Taylor M (2001) German wheat pool. In: Bonjean AP, Angus WJ (eds) The world wheat book: a history of wheat breeding. Intercept, London, pp 167–191

    Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nat Commun 3:1293

    Article  PubMed  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Reif JC, Gumpert F, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  CAS  PubMed  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  CAS  PubMed  Google Scholar 

  • Scotti C, Brummer EC (2010) Creation of heterotic groups and hybrid varieties. In: Huyghe C (ed) Sustainable use of genetic diversity in forage and turf breeding. Springer, Dordrecht, pp 509–518

    Chapter  Google Scholar 

  • Seifert F, Thiemann A, Grant-Downtown R, Edelmann S, Schrag T, Gutierrez-Marcos JF, Frisch M, Dickinson HG, Melchinger AE, Scholten S (2016) Pericentromeric 22-nt small RNAs are negatively associated with yield heterosis of maize. In Review

  • Shull GF (1952) Beginnings of the heterosis concept. In: Gowen JW (ed) heterosis. Iowa State College Press, Ames

    Google Scholar 

  • Sohail Q, Manickavelu A, Ban T (2015) Genetic diversity analysis of Afghan wheat landraces (Triticum aestivum) using DArT markers. Genet Resour Crop Evol 62:1147–1157

    Article  CAS  Google Scholar 

  • Solomon KF, Labuschagne MT, Viljoen CD (2007) Estimates of heterosis and association of genetic distance with heterosis in durum wheat under different moisture regimes. J Agr Sci 145:239–248

    Article  Google Scholar 

  • Stamp P, Visser R (2012) The twenty-first century, the century of plant breeding. Euphytica 186:585–591

    Article  Google Scholar 

  • R Core Team (2012) R: A Language and Environment for Statistical Computing. http://www.R-project.org/

  • Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, Melchinger AE (2014) Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize. Genetics 197:1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Troyer AF (2006) Adaptedness and heterosis in corn and mule hybrids. Crop Sci 46:528–543

    Article  Google Scholar 

  • van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109:12420–12425

    Article  Google Scholar 

  • Wang K, Qiu F, Larazo W, dela Paz M, Xie F (2015) Heterotic groups of tropical indica rice germplasm. Theor Appl Genet 128:421–430

    Article  CAS  PubMed  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013a) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126:2233–2243

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Mackay IJ, Saville RJ, Korolev AV, Balfourier F, Greenl AJ, Boulton MI, Powell W (2013b) Haplotype dictionary for the Rht-1 loci in wheat. Theor Appl Genet 126:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Williams E, Piepho H, Whitaker D (2011) Augmented p-rep designs. Biom J 53:19–27

    Article  PubMed  Google Scholar 

  • Wingen LU, Orford S, Goram R, Leverington-Waite M, Bilham L, Patsiou TS, Ambrose M, Dicks J, Griffiths S (2014) Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor Appl Genet 127:1831–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Würschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486

    Article  PubMed  Google Scholar 

  • Würschum T, Boeven PHG, Langer SM, Longin CFH, Leiser WL (2015a) Multiply to conquer: copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet 16:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Langer SM, Longin CFH (2015b) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128:865–874

    Article  PubMed  Google Scholar 

  • Xu S, Zhu D, Zhang Q (2014) Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proc Natl Acad Sci USA 111:12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D, Sourdille P, Zhang A (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Mette MF, Reif JC (2015) Genomic selection in hybrid breeding. Plant Breed 134:1–10

    Article  Google Scholar 

  • Zhao Y, Li Z, Liu G, Jiang Y, Maurer HP, Würschum T, Mock HP, Matros A, Ebmeyer E, Schachschneider R, Kazman E, Schacht J, Gowda M, Longin CFH, Reif JC (2016) Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc Natl Acad Sci USA. doi:10.1073/pnas.1514547112

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Simon M. Langer and Christiane Maus for collecting phenotypic data. We thank three anonymous reviewers for their helpful comments. This work was partially funded by the Deutsche Forschungsgemeinschaft under grant number WU 658/1-1 and by BMEL within the “ZUCHTWERT” project (Grant ID: 2814604113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Ethics declarations

Ethical standard

The authors declare that the experiments comply with the current laws of Germany.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Mackay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 701 kb)

Supplementary material 2 (CSV 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeven, P.H.G., Longin, C.F.H. & Würschum, T. A unified framework for hybrid breeding and the establishment of heterotic groups in wheat. Theor Appl Genet 129, 1231–1245 (2016). https://doi.org/10.1007/s00122-016-2699-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2699-x

Keywords

Navigation